Gravitational waveforms in scalar-tensor theories

Laura Bernard

Rencontre du groupe de travail

"Tests de la relativité générale et théories alternatives"

IPhT CEA-Saclay - 31 janvier 2019

Laboratoire de l'Univers et de ses Théories

LAURA BERNARD

How to modify General Relativity ?

THE SCALAR-TENSOR ACTION

$$S_{\rm ST} = \frac{c^3}{16\pi G} \int d^4x \sqrt{-g} \left[\phi R - \frac{\omega(\phi)}{\phi} g^{\alpha\beta} \partial_\alpha \partial_\beta \phi \right] + S_m \left(\mathfrak{m}, g_{\alpha\beta}\right)$$

- ▷ Simple: add one massless scalar field
- ▷ Minimal: scalar field coupled only to gravity, not to the matter
 - ▷ Weak-field tests: Solar System, binary pulsar tests
 - $\triangleright\,$ Strong constraints on the parameters of the theory

LAURA BERNARD

ST ACTION IN EINSTEIN FRAME

CONFORMAL TRANSFORMATION

$$\tilde{g}_{\mu\nu} = \varphi g_{\mu\nu}, \qquad \varphi = \frac{\phi}{\phi_0} \qquad \text{with } \phi_0 = \phi(\infty) = \text{cst}$$

$$S_{\rm ST} = \frac{c^3 \phi_0}{16\pi G} \int d^4 x \sqrt{-\tilde{g}} \left[\tilde{R} - \frac{3 + 2\omega(\phi)}{2\varphi^2} \tilde{g}^{\alpha\beta} \partial_\alpha \varphi \partial_\beta \varphi \right] + S_m \left(\mathfrak{m}, \frac{\tilde{g}_{\alpha\beta}}{\varphi} \right)$$

- ▷ Stationary BHs indistinguishable from GR
- \triangleright Still interesting: Strong deviations from GR for neutron stars
- \triangleright Well-posed initial value problem

The treatment of matter

Violation of the Strong Equivalence Principle

- ▷ Incorporate the internal structure of compact, self-gravitating bodies
- \triangleright Eardley's approach: masses depend on the scalar field $m_A(\phi)$

$$S_{\mathrm{m}} = -\sum_{A}\int\mathrm{d}t\, m_{A}(\phi)\,c^{2}\,\sqrt{-g_{lphaeta}}rac{v_{A}^{lpha}v_{A}^{eta}}{c^{2}}$$

$$\triangleright$$
 Sensitivities: $s_A = \left. \frac{\mathrm{d} \ln m_A(\phi)}{\mathrm{d} \ln \phi} \right|_0$

- Neutron stars: $s_A \sim 0.2$ (depends on the equation of states)
- Black holes: $s_A = 0.5$ (compacity M/R)
- related to the scalar charge $\alpha_A \propto 1 2s_A$

$$\triangleright \text{ Higher order: } \tilde{\beta} \propto \left. \frac{\mathrm{d}^2 \ln m_A(\phi)}{\mathrm{d} \ln \phi^2} \right|_0$$

LAURA BERNARD

BINARY PULSAR CONSTRAINTS

LAURA BERNARD

BINARY COALESCENCE IN ST THEORIES

- LATE INSPIRAL MERGER
 - \triangleright Spontaneous scalarisation
 - \triangleright Dynamical scalarisation
 - Numerical results
 - Analytical approach using resummation tecniques

LAURA BERNARD

INSPIRAL: POST-NEWTONIAN FORMALISM

Isolated, compact, $\mathbf{slowly}\ \mathbf{moving}\ \mathrm{and}\ \mathbf{weakly}\ \mathbf{stressed}\ \mathrm{source}$

Method of asymptotic matching

- Near zone : post-Newtonian expansion, $n PN = \mathcal{O}\left(\frac{1}{c^{2n}}\right)$
- Exterior zone : multipolar expansion in power of $\frac{r_{12}}{R}$
- ▶ radiative moments $\underset{\text{exp. in }1/R}{\leftarrow}$ source moments $\underset{\text{matching}}{\rightarrow}$ source

LAURA BERNARD

BINARY COALESCENCE IN ST THEORIES

INSPIRAL - TOWARDS 2PN WAVEFORMS

- \triangleright Equations of motion at 3PN
- ▷ Tensor gravitational waveform to 2PN
- \triangleright Scalar waveform to 1.5PN: starts at -0.5PN
- \triangleright Energy flux to 1PN: starts at $-1\mathbf{PN}$

$$\frac{\mathrm{d}E_{\mathrm{dipole}}}{\mathrm{d}t} = \frac{4m\nu^2}{3rc^3} \left(\frac{G_{\mathrm{eff}}m}{r}\right)^3 \left(\alpha_2 - \alpha_1\right)^2$$

- $\triangleright\,$ Phase evolution and amplitude to 2PN
 - Dipolar-driven regime : large separations or large scalar dipole
 - Quadrupolar-driven regime : most cases

BINARY COALESCENCE IN ST THEORIES

INSPIRAL - TOWARDS 2PN WAVEFORMS

- ▷ Equations of motion at 3PN (mPN formalism)
- ▷ Tensor gravitational waveform to 2PN (DIRE formalism)
- \triangleright Scalar waveform to 1.5PN: starts at -0.5PN (DIRE)
- \triangleright Energy flux to 1PN: starts at -1PN (DIRE)

$$\frac{\mathrm{d}E_{\mathrm{dipole}}}{\mathrm{d}t} = \frac{4m\nu^2}{3rc^3} \left(\frac{G_{\mathrm{eff}}m}{r}\right)^3 \left(\alpha_2 - \alpha_1\right)^2$$

- ▷ Phase evolution and amplitude to 2PN
 - Dipolar-driven regime : large separations or large scalar dipole
 - Quadrupolar-driven regime : most cases

POTENTIAL ISSUES WHEN MATCHING

▷ **Dimensional regularisation** to be implemented in both cases ?

3PN EQUATIONS OF MOTION

▷ A scalar tail term: new ST effect at 3PN

$$L_{\rm tail} \propto \frac{1}{c^6} I_i^{(2)}(t) \int_0^{+\infty} {\rm d}t \, \ln\left(\frac{\tau}{\tau_0}\right) I_i^{(3)}(t-\tau)$$

LAURA BERNARD

3PN EQUATIONS OF MOTION

DIMENSIONAL REGULARISATION

- ▷ Ultraviolet divergences: point-particle approximation
- ▷ Infrared divergences: PN solution at infinity
- ▷ Nonlocal tail term

Results

- $\triangleright~$ BHs still indistinguishable from GR
- \triangleright Conserved integrals of motion

Laura BERNARD

FINITE-SIZE EFFECTS

Reminder - General relativity

$$S_{\text{extended bodies}} = S_{\text{p.p.}} + \int \left(k_2 C_{\mu\nu\rho\sigma}^2 + k_4 C^2 u^2 + \cdots\right) c \, \mathrm{d}s$$

$$\triangleright \ \mathcal{Q}_{\mu\nu} = -\lambda_2 \, \mathcal{E}_{\mu\nu}$$

- $\triangleright\,$ starts at 5PN.
- \triangleright Electric and magnetic-type tidal Love number: $k_l^{\rm E}$ and $k_l^{\rm B}$,

CONSTRAINTS ON THE NS EQUATION OF STATE

THE SCALAR TIDAL EFFECT

$$\Delta S_{(fs)} = -\frac{1}{2} \sum_{A} \lambda_A^{(s)} \int \mathrm{d}s_A \, \left(g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi\right)_A$$

 $\triangleright\,$ Time-varying scalar dipole moment $\propto\,$ external tidal field

$$\mathcal{Q}_{\mu}^{(s)} = -\lambda_{(s)}\mathcal{E}_{\mu}^{(s)}$$

 \triangleright Scalar-type Love number $\lambda_{(s)}$

CONSEQUENCE ON SCALAR RADIATION

- \triangleright 3PN order in the dynamics $\Delta \mathbf{a}_{(fs)} \sim \mathbf{a}_{(N)} \cdot \tilde{\lambda}^{(s)} x^3 \qquad x = (m\omega)^{2/3}$
- ▷ small ST parameters but scales as $\left(\frac{R}{M}\right)^3$

$$\triangleright \ \Delta\psi_{(fs)} \sim -\frac{1}{4\zeta(\alpha_1 - \alpha_2)^2 \eta x^{3/2}} \tilde{\Lambda}_{(s)} x^3 \Longrightarrow \ \text{2PN effect in the phase}$$

SUMMARY AND PROSPECTS

Towards a full IMR waveform

- $\triangleright~{\rm PN}$ inspiral modelling
- ▷ Tidal effects scalar-type Love number
- \triangleright Effective one body formalism
- \triangleright Late-inspiral effects
- ▷ Matching to numerical relativity