Stochastic and resolvable gravitational waves from ultralight bosons

> Enrico Barausse, Institut d'astrophysique de Paris/CNRS Paris, France

> > (mainly) based on

arxiv: 1706.05097; 1706.06311; 1805.08229; see also arXiv:1404.7149; 1811.07786

Outline

- A review of boson condensate formation around spinning BHs and their GW emission
- Astrophysical models for spinning BHs
- Constraints on boson masses in the LISA and LIGO bands by
 - Direct detections
 - Stochastic backgrounds
 - "Holes" in Regge plane
- Constraints on BH mimickers

Outline

- A review of boson condensate formation around spinning BHs and their GW emission
- Astrophysical models for spinning BHs
- Constraints on boson masses in the LISA and LIGO bands by
 - Direct detections
 - Stochastic backgrounds
 - "Holes" in Regge plane
- Constraints on BH mimickers

Why light bosons?

- Scalars ubiquitous in string theory, inflation, dark matter models (e.g. fuzzy/axionic dark matter)
- Useful as toy models for unknown phenomena/ interactions (e.g. modifications of GR)
- "Light" means <~ 1.e-10 eV
- Effect of mass term expected to be qualitatively similar for all boson degrees of freedom

Self-gravitating scalar configurations

- Scalars can form self-gravitating configurations, especially if complex, massive (to avoid dispersion to infinity) and time dependent (to provide pressure): boson stars, oscillatons
- Around BHs, massive real (complex) scalars can form quasi-stationary (stationary) configurations: boson clouds or condensates, hairy BHs

BH-boson condensates

- Formation linked to superradiant instabilities/Penrose process (amplification of scattered waves with $\omega < m\Omega_H$)
- BH with high enough spin and "mirror" are superradiance unstable (BH bomb; Zeldovich 71, Press & Teukolsky 72, Cardoso et al 04)
- In ergoregion, negative energy modes can be produced but are confined (only positive energy modes can travel to infinity)
- By energy conservation, more and more negative energy modes can be produced, which may cause instability according to boundary conditions (at horizon and spatial infinity)

BH-boson condensates

- Formation linked to superradiant instabilities/Penrose process (amplification of scattered waves with $\omega < m\Omega_H$)
- BH with high enough spin and "mirror" are superradiance unstable (BH bomb; Zeldovich 71, Press & Teukolsky 72, Cardoso et al 04)
- In ergoregion, negative energy modes can be produced but are confined (only positive energy modes can travel to infinity)
- By energy conservation, more and more negative energy modes can be produced, which may cause instability according to boundary conditions (at horizon and spatial infinity)

Superradiance from near horizon physics

- Deviations away from Kerr geometry near horizon (e.g. firewalls, gravastars, wormholes, Lorentz violations, etc) can produce significant changes in QNM spectrum
- Delays $\Delta t \sim \log[r_0/(2M) 1]$

Cardoso, Franzin & Pani 2016

EB, Cardoso & Pani 2014

BH-boson condensates

 Same instability of spinning BH + massive boson (mass acts as "mirror" and allows for bound states), but NOT for fermions. Cf Damour, Deruelle & Ruffini 76

Instability end point

 BH sheds excess spin (and to a lesser degree mass) into a mostly dipolar rotating boson cloud ...

$$m_s \equiv \mu \hbar$$
, $\omega_R \sim \mu - rac{M^2 \mu^3}{8}$

$$\Phi = A_0 g(r) \cos(m_\phi \phi - \omega_R t) \sin \theta$$
,

• ... till instability saturates

 $\mu \sim m \Omega_{
m H}$

$$\left| \tau_{\rm inst} \sim 0.07 \, \chi^{-1} \left(\frac{M}{10 \, M_\odot} \right) \left(\frac{0.1}{M \mu} \right)^9 \, {\rm yr} \, , \right.$$

(for Mµ<<1 and χ <<1; max instability for Mµ=0.42)

GW emission

 Long-lived rotating scalar dipole produces almost monochromatic GWs via quadrupole formula on timescale

$$au_{\rm GW} \sim 6 \times 10^4 \, \chi^{-1} \left(\frac{M}{10 \, M_\odot} \right) \left(\frac{0.1}{M \mu} \right)^{15} \, {\rm yr}$$

$$h = \sqrt{rac{2}{5\pi}} rac{GM}{c^2 r} \left(rac{M_S}{M}
ight) A(\chi, f_s M),$$
 rms strain amplitude

Background from isolated spinning BHs

energy emission efficiency

 $f_{\rm ax} \sim \mathcal{O}(1\%)$

$$\Delta \ln f \sim 1$$

LISA band massive BHs ~ $10^4\text{--}10^7\ M_{sun},\ m_s\text{--}10^{-16}\text{--}10^{-18}\ eV$

$$\begin{split} \rho_{\rm BH} &\sim \mathcal{O}(10^4) M_{\odot}/{\rm Mpc}^3 \\ \Omega_{\rm GW,\,ax} &= (1/\rho_{\rm c}) (d\rho_{\rm GW}/d\ln f) \sim f_{\rm ax} \rho_{\rm BH}/\rho_{\rm c} \\ \Omega_{\rm GW,\,ax}^{\rm LISA} &\sim 10^{-9} \end{split}$$

Background from isolated spinning BHs

energy emission efficiency

 $f_{\rm ax} \sim \mathcal{O}(1\%)$

monochromatic GW in source frame

$$\Delta \ln f \sim 1$$

LIGO/Virgo band stellar-mass BHs ~ 10-50 M_{sun}, m_s~10⁻¹³ - 10⁻¹² eV $\Omega_{\rm GW, \, bin} \sim f_{\rm GW} f_{\rm m} \rho_{\rm BH} / \rho_c$ $f_{\rm GW} \sim \mathcal{O}(1\%) \quad f_{\rm m} \sim \mathcal{O}(1\%)$ $\Omega_{\rm GW, \, ax} / \Omega_{\rm GW, \, bin} \sim f_{\rm ax} / (f_{\rm GW} f_{\rm m}) \sim 10^2$

$$\Omega_{\rm GW, \, bin} \sim 10^{-9} - 10^{-8} \ \Omega_{\rm GW, \, ax}^{\rm LIGO} \sim 10^{-7} - 10^{-6}$$

Background from isolated spinning BHs

Background and resolved sources

Need to account for effect of stochastic background on sensitivity (cf e.g. WD binaries for LISA)

Regge plane "holes"

Look for "accumulation" near instability threshold to avoid having to make assumptions on astrophysical model

Bounds on BH mimickers

BH mimickers with no horizon are unstable to superradiance

EB, Brito, Cardoso, Dvorkin, Pani 2018

- Lorentz violations introduce "asymmetry" between space and time (e.g. Horava, Einstein-aether)
- Dispersion relations imply diverging group velocity in UV:

- Event horizon definition still possible because of preferred time foliation: universal horizon (EB, Jacobson and Sotiriou 2011; Blas, Sibiryakov 2011
- Universal horizon may be unstable and form finite area curvature singularity away from spherical symmetry: echoes/near horizon exotica? (Blas, Sibiryakov 2011; Bhattacharyya, Colombo, & Sotiriou 2016; Ramos & EB 2018)

- Lorentz violations introduce "asymmetry" between space and time (e.g. Horava, Einstein-aether)
- Dispersion relations imply diverging group velocity in UV:

- Event horizon definition still possible because of preferred time foliation: universal horizon (EB, Jacobson and Sotiriou 2011; Blas, Sibiryakov 2011
- Universal horizon may be unstable and form finite area curvature singularity away from spherical symmetry: echoes/near horizon exotica? (Blas, Sibiryakov 2011; Bhattacharyya, Colombo, & Sotiriou 2016; Ramos & EB 2018)

- Lorentz violations introduce "asymmetry" between space and time (e.g. Horava, Einstein-aether)
- Dispersion relations imply diverging group velocity in UV:

- Event horizon definition still possible because of preferred time foliation: universal horizon (EB, Jacobson and Sotiriou 2011; Blas, Sibiryakov 2011
- Universal horizon may be unstable and form finite area curvature singularity away from spherical symmetry: echoes/near horizon exotica? (Blas, Sibiryakov 2011; Bhattacharyya, Colombo, & Sotiriou 2016; Ramos & EB 2018)

- Lorentz violations introduce "asymmetry" between space and time (e.g. Horava, Einstein-aether)
- Dispersion relations imply diverging group velocity in UV:

- Event horizon definition still possible because of preferred time foliation: universal horizon (EB, Jacobson and Sotiriou 2011; Blas, Sibiryakov 2011
- Universal horizon may be unstable and form finite area curvature singularity away from spherical symmetry: echoes/near horizon exotica? (Blas, Sibiryakov 2011; Bhattacharyya, Colombo, & Sotiriou 2016; Ramos & EB 2018)

- Lorentz violations introduce "asymmetry" between space and time (e.g. Horava, Einstein-aether)
- Dispersion relations imply diverging group velocity in UV:

- Event horizon definition still possible because of preferred time foliation: universal horizon (EB, Jacobson and Sotiriou 2011; Blas, Sibiryakov 2011
- Universal horizon may be unstable and form finite area curvature singularity away from spherical symmetry: echoes/near horizon exotica? (Blas, Sibiryakov 2011; Bhattacharyya, Colombo, & Sotiriou 2016; Ramos & EB 2018)

- Lorentz violations introduce "asymmetry" between space and time (e.g. Horava, Einstein-aether)
- Dispersion relations imply diverging group velocity in UV:

- Event horizon definition still possible because of preferred time foliation: universal horizon (EB, Jacobson and Sotiriou 2011; Blas, Sibiryakov 2011
- Universal horizon may be unstable and form finite area curvature singularity away from spherical symmetry: echoes/near horizon exotica? (Blas, Sibiryakov 2011; Bhattacharyya, Colombo, & Sotiriou 2016; Ramos & EB 2018)

Conclusions

- Ultralight bosons can induce superradiant instabilities in spinning black holes, tapping their rotational energy to trigger the growth of a bosonic condensate
- Boson condensates emit almost monochromatic GWs
- GWs are LISA/LIGO band if boson's Compton wavelength is Gm/km scale
- Main observable is stochastic background, but resolved sources and Regge plane "holes" also possible
- LIGO rules out already masses ~ a few x 10⁻¹² eV, LISA will extend to ~ 10⁻¹⁸ eV
- Similar bounds on BH mimickers (and possibly Lorentz symmetry) from stochastic background