Boson stars

Philippe Grandclément

January 31, 2019

Laboratoire de l'Univers et Théorie (LUTH) CNRS / Observatoire de Paris F-92195 Meudon, France

philippe.grandclement@obspm.fr

Generalities

What is a boson star ?

- Localized configuration of a self-gravitating complex scalar field.
- Introduced in the 1960s by Bonazolla, Pacini, Kaup and Ruffini.
- Corresponds to spin-0 particle \implies boson.
- At least one scalar field in nature : *Higgs boson*.

- the simplest self-gravitating object with matter.
- scalar field appear in primordial cosmology (inflaton).
- Possible candidate for dark matter (rotation curves of galaxies).
- Alternative to black holes : can accommodate a big mass in a small radius without an event horizon.

Boson star model

• Scalar field has a U(1) symmetry:

 $\Phi \longrightarrow \Phi \exp\left(i\alpha\right).$

• The Lagrangian of the field is

$$\mathcal{L}_{M} = -\frac{1}{2} \left[g^{\mu\nu} \nabla_{\mu} \bar{\Phi} \nabla_{\nu} \Phi + V \left(|\Phi|^{2} \right) \right].$$

V is a potential (for a free field $V = m^2/\hbar^2 \left|\Phi\right|^2$)

• The Lagrangian of gravity is

$$\mathcal{L}_g = \frac{1}{16\pi} R$$

The variation of the equation gives the Einstein-Klein-Gordon system.

Orders of magnitude

Free-field potential $V(|\Phi|^2) = \frac{m^2}{\hbar^2} |\Phi|^2$: mini-boson stars

- Compton wavelength : $\frac{\hbar}{mc}$.
- Associated mass scale : $M = \frac{m_p^2}{m}$.
- Planck mass : $m_p = \sqrt{\hbar c/G}$.

Scalar field mass	$m_{ m Higgs}$	$m_{ m proton}$	$m_{ m electron}$
Boson star mass (solar mass)	$1 \cdot 10^{-21}$	$1 \cdot 10^{-19}$	$2 \cdot 10^{-16}$

Interaction potential $V(|\Phi|^2) = \frac{m^2}{\hbar^2} |\Phi|^2 \left(1 + 2\pi\Lambda |\Phi|^2\right)$

- True coupling constant : $\lambda = 4\pi G m^2 \Lambda$.
- New mass scaling : $M \propto \lambda^{1/2} \frac{m_p^2}{m^2}$ (big for $\lambda \approx 1$).

Scalar field mass	$m_{ m Higgs}$	$m_{ m proton}$	$m_{ m electron}$
Boson star mass (solar mass)	$1 \cdot 10^{-4}$	2	$5\cdot 10^6$

Numerical models

- $\Phi = \phi \exp\left[i\left(\omega t k\varphi\right)\right]$
 - $U\left(1\right)$ \Longrightarrow the action does not depend on $\left(t,\varphi\right)$.
 - ϕ and the metric fields depend only on (r, θ) .
 - k and ω appear as parameters in the equations.
 - k is an integer and ω a real number.
 - k = 0 corresponds to spherically symmetric configurations.

Asymptotic behavior

• Asymptotically, ϕ obeys

$$\Delta_3 \phi - \frac{k^2}{r^2 \sin^2 \theta} \phi - \left(1 - \omega^2\right) \phi = 0$$

- It follows that the field is localized if and only if $\omega < 1$.
- When $\omega \to 1$, $\phi \to 0$ and its size tends to infinity.
- The most relativistic boson stars are obtained for smaller ω .

Properties

- 5 unknown fields.
- 5 coupled non-linear partial differential equations (elliptic-like).
- Kadath implements multi-domains spectral methods.
- Here uses several spherical domains.
- Chebyshev polynomials in r and trigonometrical functions in θ .
- Equations are discretized by the weighted residual method.
- The non-linear system is solved using a Newton-Raphson iteration.
- The first solution for each value of k is the most difficult to find.
- Once it is known, ω is slowly varied to construct a sequence.

Mass

Momentum

Field contours ; variation with k

Configuration of ϕ for $\omega = 0.8$ and k = 1, k = 2 and k = 3.

Compactness

Photon orbits

Effective potential method

• Metric in quasi-isotropic coordinates :

 $g_{\mu\nu} dx^{\mu} dx^{\nu} = -N^2 dt^2 + A^2 \left(dr^2 + r^2 d\theta^2 \right) + B^2 r^2 \sin^2 \theta \left(d\varphi + \beta^{\varphi} dt \right)^2$

• Light rings : closed circular orbits of photons.

 $U^{\alpha} = \left(U^t, U^r, 0, U^{\varphi}\right)$

- Two conserved quantities $U_{\alpha} \left(\partial_{t}\right)^{\alpha} = -E$ and $U_{\alpha} \left(\partial_{\varphi}\right)^{\alpha} = L$.
- Null geodesics $U_{lpha}U^{lpha}=0$ leads to $\left(U^{r}\right)^{2}+V_{\mathrm{eff}}\left(r
 ight)=0$

$$V_{\text{eff}} = \frac{1}{A^2} \left[-\frac{\left(\beta^{\varphi}L + E\right)^2}{N^2} + \frac{L^2}{B^2 r^2} \right]$$

Circular orbits

- Circular orbits require $V_{\rm eff}=0$ and $\partial_r V_{\rm eff}=0$
- First condition implies

$$\frac{E}{L} = -\beta^{\varphi} + \epsilon \frac{N}{Br} \quad ; \quad \epsilon = \pm 1$$

- Contrary to the massive case only the ratio E/L is constrained.
- Second condition reduces to finding the zeros of

$$I(r) = \left(\epsilon \frac{\partial_r \beta^{\varphi}}{NB}\right) r^2 + \left(\frac{\partial_r B}{B^3} - \frac{\partial_r N}{NB^2}\right) r + \frac{1}{B^2}$$

I(r) without light rings

I(r) with light rings

Existence of light rings

Properties

The orbital frequency is given by $\frac{\mathrm{d}\varphi}{\mathrm{d}t} = -\frac{N}{Br} - \beta^{\varphi}$.

Black hole case

- Two light rings for Kerr black holes.
- One prograde and one retrograde.
- Both unstable.

Boson star case

- Two light rights for relativistic enough configurations.
- The outer one is unstable and retrograde.
- The outer one is stable (and changes type).

Orbital frequency of the inner light ring

Inner light ring

Direct integration with Gyoto ; k = 2 and $\omega = 0.7$.

Outer light ring

Direct integration with Gyoto ; k = 2 and $\omega = 0.7$.

Light point

Direct integration with Gyoto ; k = 2 and $\omega = 0.6387$.

Observational perspectives

Galactic center

If it is a black hole, it is the one with the largest angular size on the sky.

Gravity instrument

- Interferometer at VLT.
- Resolution $\approx 10 \mu as$.

Hot spots close to the ISCO

- Material very close the the ISCO.
- But almost undistinguishible from the boson star case.

Event Horizon Telescope

- Array of radio-telescopes.
- Interferometry with very long baseline
- Resolution about the size of Sgr A* $\approx 10\mu as$.
- First observations consistent with disk models.

Accretion disks : BH vs BS

Almost no difference

Use of gravitational waves : EMRI

- Stellar mass object captured by a supermassive object.
- Emits GW in the LISA-band.
- Small object maps the spacetime around the massive one.

Kerr or not Kerr ?

Testing the uniqueness theorem

- For Kerr, only M and S are independent.
- For instance $Q = -S^2/M$
- Moments are encoded in the GW.
- Test : assume they are independent and check the Kerr-ness.
- For 1 year EMRI : $\Delta (Q/M^3) \approx 10^{-4} 10^{-2}$.

More detailed tests

- Previous test assumes nothing about the supermassive object.
- Can try to detect features associated with boson stars.
- In the spherical case, *Kesden et al.* study the effect of the absence of horizon.
- No work with rotation.

- Boson stars are one of the simplest alternative to black holes.
- Formation scenario uncertain.
- Numerical models have been computed.
- Observational constraints from the galactic center are coming up but no strong constraints yet.
- Detailed tests will be provided by gravitational waves (LISA).