NEUTRINO TOMOGRAPHY I. GEONEUTRINOS: A NEW TOOL TO STUDY THE EARTH

LIVIA LUDHOVA

IKP-2, FORSCHUNGSZENTRUM JÜLICH AND RWTH AACHEN UNIVERSITY, GERMANY

FEBRUARY 11TH, 2019 WORKSHOP ON OBSERVATORY SYNERGIES FOR ASTROPARTICLE PHYSICS AND GEOSCIENCE INSTITUT DE PHYSIQUE DU GLOBE DE PARIS, PARIS, FRANCE

OUTLINE

- What are geoneutrinos and why to study them.
- Expected geoneutrino flux.
- KamLAND and Borexino: geoneutrino measurements.
- Neutrino geoscience: outlook.

from the decays of long-lived radioactive isotopes naturally present in the Earth (^{238/235}U and ²³²Th chains and ⁴⁰K)

from the decays of long-lived radioactive isotopes naturally present in the Earth (^{238/235}U and ²³²Th chains and ⁴⁰K)

²³⁸U (99.2739% of natural U) \rightarrow ²⁰⁶Pb + 8 α + 8 e^{-} + 6 anti-neutrinos + **51.7 MeV**

²³²Th \rightarrow ²⁰⁸Pb + 6 α + 4 e^- + 4 anti-neutrinos + 42.8 MeV

²³⁵U (0.7205% of natural U) → 207 Pb + 7 α + 4 e^{-} + 4 anti-neutrinos + **46.4 MeV**

⁴⁰K (0.012% of natural K) \rightarrow ⁴⁰Ca + e⁻ + 1 anti-neutrino + 1.32 MeV (BR=89.3 %)

 40 K + $e^{-} \rightarrow ^{40}$ Ar + 1 neutrino + **1.505 MeV** (BR=10.7 %)

from the decays of long-lived radioactive isotopes naturally present in the Earth (^{238/235}U and ²³²Th chains and ⁴⁰K)

²³⁸U (99.2739% of natural U) \rightarrow ²⁰⁶Pb + 8 α + 8 e^{-} + 6 anti-neutrinos + 51.7 MeV

²³²Th \rightarrow ²⁰⁸Pb + 6 α + 4 e^- + 4 anti-neutrinos + 42.8 MeV

²³⁵U (0.7205% of natural U) \rightarrow ²⁰⁷Pb + 7 α + 4 e^- + 4 anti-neutrinos + **46.4 MeV**

⁴⁰K (0.012% of natural K) \rightarrow ⁴⁰Ca + e^- + 1 anti-neutrino + 1.32 MeV (BR=89.3 %)

 40 K + $e^{-} \rightarrow ^{40}$ Ar + 1 neutrino + **1.505 MeV** (BR=10.7 %)

Uthe only direct probe of the deep Earth

□ released heat and anti-neutrinos flux in a well fixed ratio

□ measure geoneutrino flux = (in principle) = get radiogenic heat

□ in practice (as always) more complicated.....

from the decays of long-lived radioactive isotopes naturally present in the Earth (^{238/235}U and ²³²Th chains and ⁴⁰K)

²³⁸U (99.2739% of natural U) \rightarrow ²⁰⁶Pb + 8 α + 8 e^- + 6 anti-neutrinos + 51.7 MeV

²³²Th \rightarrow ²⁰⁸Pb + 6 α + 4 e^- + 4 anti-neutrinos + 42.8 MeV

²³⁵U (0.7205% of natural U) → 207 Pb + 7 α + 4 e^{-} + 4 anti-neutrinos + **46.4 MeV**

⁴⁰K (0.012% of natural K) \rightarrow ⁴⁰Ca + e^- + 1 anti-neutrino + 1.32 MeV (BR=89.3 %)

 40 K + $e^{-} \rightarrow ^{40}$ Ar + 1 neutrino + **1.505 MeV** (BR=10.7 %)

Uthe only direct probe of the deep Earth

□ released heat and anti-neutrinos flux in a well fixed ratio

□ measure geoneutrino flux = (in principle) = get radiogenic heat

□ in practice (as always) more complicated.....

Earth shines in antineutrinos: flux ~10⁶ cm⁻² s⁻¹ leaving freely and instantaneously the Earth interior (to compare: solar neutrino (NOT antineutrino!) flux ~10¹⁰ cm⁻² s⁻¹)

GEONEUTRINOS AND WHY TO STUDY THEM

Neutrino geoscience: truly inter-disciplinary field!

- Main goal: determine the contribution of the radiogenic heat (principally the mantle contribution) to the total surface heat flux, which is an important margin, test, and input at the same time for many geophysical and geochemical models of the Earth;
- Further goals: U/Th ratio, tests and discrimination among geological models, Earth composition models, study of the mantle homogeneity or stratification, insights to the processes of Earth'formation, additional sources of heat?, idea of U-based geo-reactor in the Earth's core (according to Herndon)

BULK SILICATE EARTH MODELS (BSE)

Models predicting the composition of the Earth primitive mantle

Various inputs: composition of the chondritic meteorites, correlations with the composition of the solar photosphere, composition of rock samples from upper mantle and crust, energy needed to run mantle convection.....

Abundances of U/Th/K (and thus also radiogenic heat) in **BSE = present-day CRUST** (continental + oceanic) + MANTLE "well" known

CRUST: 7-8TW (only ~0.2 TW in oceanic crust)

MANTLE = BSE - CRUST

3-25 TW (different BSE models)

U,Th, K abundance Ising ncrea:

Wadepohl. 1995 Rudnick and Fountain, 1995 Taylor and McLennan, 1995 McLennan 2001 Rudnick and Gao, 2003 Hacker at al., 2011 Huang at al., 2013

Big uncertainty

Crustal

models

In C1 carbonaceous chondrites

ANTINEUTRINO DETECTION WITH LIQUID SCINTILLATORS

Small interaction cross section;
Large volume detectors;
High radio-purity of liquid scintillator and construction materials;
Underground labs to shield cosmic radiations;

Antineutrino detection: Coincidences (BGR suppression)

- Inverse beta decay (IBD)
- Charge current, e-flavour only

EXPECTED GEONEUTRINO SIGNAL

The signal is small, we need big detectors!

1 TNU = 1 event / 10³² target protons / year cca 1 event /1 kton /1 year, 100% detection efficiency

Expected mantle signal: m(U+Th+K) = BSE – crust and hypothesis of heterogeneous composition Motivated by the observed Large Shear Velocity Provinces at the mantle base

To measure mantle signal is more challenging!

O. Šrámek et al. "Geophysical and geochemical constraints on geoneutrino fluxes from Earths mantle", Earth Planet. Sci. Lett., 361 (2013) 356-366)

GEONEUTRINO ENERGY SPECTRA

DETECTING GEONEUTRINOS (IBD with LS-detectors)

- only 2 experiments have measured geoneutrinos;
- both liquid scintillator detectors;

KamLAND in Kamioka, Japan Border between OCEANIC / CONTINENTAL CRUST

- built to detect reactor anti-v;
 1000 tons;
- •S(reactors)/S(geo) ~ 6.7 (2010)
- •After the Fukushima disaster (03/2011) many reactors OFF and S(reactors)/S(geo) ~ 1!
- data since 2002;
- •2700 m.w.e. shielding;

Borexino in Gran Sasso, Italy CONTINENTAL CRUST

- originally built to measure neutrinos from the Sun (singles due from v-e scattering) – extreme radio-purity needed and achieved;
- 280 tons;
- •S(reactors)/S(geo) ~ 0.3 !!! (2010)
- DAQ started in 2007;
- 3600 m.w.e. shielding;

HISTORY OF GEONU MEASUREMENTS

KamLAND (Japan)

• The first investigation in 2005

 $CL < 2\sigma$ **Nature 436 (2005) 499** 7.09 x 10³¹ target-proton year

• <u>Update in 2008</u> PRL 100 (2008) 221803 73 ± 27 geonu's

 2.44×10^{32} target-proton year

• <u>99.997 CL observation in 2011</u>

106 ⁺²⁹ ₋₂₈ **geonu's** (March 2002 – April 2009) 3.49 x 10³² target-proton year Nature Geoscience 4 (2011) 647

2100

• Latest published result in 2013

116 ⁺²⁸ ₋₂₇ **geonu's** (March 2002 – November 2012) 4.9 x 10³² target-proton year PRD 88 (2013) 033001

15-170/0

 Preliminary update in 2016: 7.92σ CL 164⁺²⁸ – 25 geonu's (LOW REACTOR)

(March 2002 – November 2016)

(H. Watanabe @ Neut. Res. And Thermal Evol. Earth)

Borexino (Italy)

- <u>99.997 CL observation in 2010</u>
 - 9.9 ^{+4.1} _{- 3.4} geonu's

small exposure but low background level (December 2007 – December 2009) 1.5 x 10³¹ target-proton year PLB 687 (2010) 299

• <u>Update in 2013</u>

14.3 ± 4.4 geonu's

(December 2007 – August 2012) 3.69 x 10³¹ target-proton year 0-hypothesis @ 6 x 10⁻⁶ PLB 722 (2013) 295–300

• <u>Latest in June 2015: 5.9σ CL</u> 23.7 ±6.5 (stat) ±0.9 (sys) geopu?

23.7 ^{+6.5}_{-5.7} (stat) ^{+0.9}_{-0.6} (sys) geonu's

(December 2007 – March 2015) 5.5 x 10³¹ target-proton year 0-hypothesis @ 3.6 x 10⁻⁹ PRD 92 (2015) 031101 (R)

• <u>NEW UPDATE COMING SOON</u>

IMPROVED DATA SELECTION, SEE POSTER S. KUMARAN

3100

-20°/0

BACKGROUNDS

B) Non-antineutrino background

1) Cosmogenic background

⁹Li and ⁸He (T_{1/2} = 119/178 ms)
•decay: β(prompt) + neutron (delayed);
• fast neutrons

scattered protons (prompt)

Estimated by studying coincidences detected AFTER muons.

<u>2) Accidental coincidences;</u> Estimated from OFF-time coincidences.

3) Due to the internal radioactivity:

(α , n) reactions: ${}^{13}C(\alpha, n){}^{16}O$ Prompt: scattered proton, ${}^{12}C(4.4 \text{ MeV}) \& {}^{16}O (6.1 \text{ MeV})$ Estimated from ${}^{210}Po(\alpha)$ and ${}^{13}C$ contaminations, cross section.

A) Reactor antineutrino background

BOREXINO GEONEUTRINO RESULTS AND ANALYSIS

S_{geo} = 43.5 ^{+11.8}_{-10.4}(stat)^{+2.7}_{-2.4}(sys) TNU

TABLE I. Estimated backgrounds for $\bar{\nu}_e$ given in number of events. Upper limits are given for 90% C.L.

- Unbinned maximum likelihood fit of 77 candidates.
- Non-antineutrino background almost negligible (< 1 event) and constrained in the fit.
- Reactor background left free in the fit: results compatible with expectations.
- 2 kinds of fit:
 - ✓ U/Th left free;
 - \checkmark U/Th constrained to chondritic value.
- Statistical error largely dominates systematic uncertainty (reactor spectra, uncertainty of backgrounds, and detector response).

KAMLAND GEONEUTRINO RESULTS

FIRST GEOLOGICAL INTERPRETATIONS

- Measured geoneutrino signal is in agreement with expectations, but we cannot distinguish among various geological models: Borexino: $S_{geo} = 43.5 + 11.8 - 10.4 (stat) + 2.7 - 2.4 (sys) TNU$ KamLAND: $S_{geo} = 34.9 + 6.0 - 5.4 TNU$
- U/Th ratio is compatible with chondritic ratio, but the errors are too big: KamLAND: Th/U = 4.1^{+5.5}-3.3
- First indications of the measured non-zero mantle signal Borexino 2015: S_{mantle} = 20.1^{+15.1}_{-10.3} TNU
- Idea of Herndon about the active geo-reactor in the Earth core excluded
 Borexino 2010 < 3TW @95% CL
 KamLAND 2011 < 5.2 TW @ 90% CL

FUTURE RESULTS AND EXPERIMENTS

- **Borexino** (Italy): update with ~20% precision soon;
- KamLAND (Japan): update with low reactor-background data soon;
- SNO+ (Canada): 780 ton & DAQ starting soon & 30-40 geonus/year; Low cosmogenics;
- JUNO (China): 20 kton & DAQ start in 2021 & 400 geonus/year Should be able to reach the precisions of 17% in the 1st year! (J. Phys. G: Nucl. Part. Phys. 43 (2016) 030401)
- JINPING (China): 5 kton; deepest lab, far away from reactors, very thick continental crust at Himalayan region; (*PRD 95 (2017) 053001*)
- HanoHano (Hawaii): 10 kton underwater detector with ~80% mantle contribution: "THE" GEONU DETECTOR: MISSING FUNDING!
 - J. G. Learned et al., XII International Workshop on Neutrino Telescopes, Venice, 2007.

- The new interdisciplinary field is born and collaboration among geologists started (Neutrino Geoscience conference series since 2005 (last time in 2015 here in Paris, next 21-23 October 2019 in Prague!), ISAPP Summer School Using Particle Physics to Understand and Image the Earth in 2016 and 2018);
- Geo-neutrinos has been observed;
- The first results are in agreement with geological expectations;
- New generation experiments needed for geologically highly significant results:
- CHALLENGE 1: detection of ⁴⁰K geoneutrinos (< 1.8 MeV)
- CHALLENGE 2: directionality (crust vs mantle contributions)

Mt. Everest group, flight from Kathmandu (Nepal) to Paro (Bhutan), March 2018

Back up slides

EFFECT OF NEUTRINO OSCILLATIONS

$$P_{ee} = P(\overline{\nu}_e \to \overline{\nu}_e) = \cos^4 \theta_{13} \left(1 - \sin^2 2\theta_{12} \sin^2 \left(\frac{\delta m^2 L}{4E} \right) \right) + \sin^4 \theta_{13}$$

3 MeV antineutrino ...

Oscillation length of ~100 km

for geoneutrinos we can use average survival probability of 0.551 + 0.015 (Fiorentini et al 2012), but for reactor antineutrinos not!

Expected crustal signal at LNGS

Expected crustal signal local (LOC) + Rest-Of-the Crust (ROC) 23.4 <u>+</u> 2.8 TNU

CONTOUR PLOTS (BOREXINO 2015)

СН

KamLAND-Phases

- ✓ Period 1: 2002 2007
- ✓ Period 2 (After a long purification campaign)2009 March 2011 (Fukushima disaster)
- ✓ Period 3 After Fukushima when many of the nuclear reactors were switched off

2013 results PRD 88 (2013) 033001

RADIOGENIC HEAT IMPLICATIONS

- Radiogenic heat (U+Th): 23-36 TW for the best fit and 11-52 TW for 1σ range
- Considering chondritic mass ratio Th/U=3.9 and K/U = 10^4 : radiogenic heat (U + Th + K) = 33^{+28}_{-20} TW

Borexino 2015 PRD 92 (2015) 031101 (R) 70 Som Som the mantle U+Th distribution in the mantle V-band due to the possible U+Th distribution in the mantle V-band due to the possible U+Th distribution in the mantle V-band due to the possible U+Th distribution in the mantle V-band due to the possible U+Th distribution in the mantle V-band due to the possible U+Th distribution in the mantle V-band due to the possible U+Th distribution in the mantle V-band due to the possible U+Th distribution in the mantle V-band due to the possible U+Th distribution in the mantle V-band due to the possible V-band due 60 +1σ 50 S(U+Th) [TNU] best value 40 -1σ 30 20 10 :11 36 23 10 20 30 40 50 60 0 H(U+Th) [TW]

SNO+ AT SUDBURY, CANADA

COMING SOON!

After SNO: D₂O replaced by 780 tons of liquid scintillator M. C. Chen, *Earth Moon Planets* **99**, 221 (2006)

Placed on an old continental crust: 80% of the signal from the crust (Fiorentini et al., 2005)

BSE: 28-38 events/per year

JUNO potential to measure geoneutrinos

Big advantage:

 Big volume and thus high statistics (400 geonu / year)!

Main limitations:

- ✓ Huge reactor neutrino background;
- Relatively shallow depth cosmogenic background;

Critical:

 Keep other backgrounds (²¹⁰Po contamination!) at low level and under control;

JUNO can provide another geoneutrino measurement with a comparable or even a

better precision than existing results at another location in a completely different geological environment;

JINPING: THE DEEPEST LAB IN THE WORLD

Lab under excavation 5 kton liquid scintillator detector

Expected IBD spectrum: Far away from reactors!!!

Very deep: small Li-He (beta, neutron) background Big signal from the continental crust

PHYSICAL REVIEW D 95, 053001 (2017)

HANOHANO AT HAWAII

HAWAII ANTINEUTRINO OBSERVATORY (HANOHANO = "MAGNIFICENT" IN HAWAIIAN

Project for a 10 kton liquid scintillator detector, movable and placed on a deep ocean floor

J. G. Learned et al., XII International Workshop on Neutrino Telescopes, Venice, 2007.

Since Hawai placed on the U-Th depleted oceanic crust **70% of the signal from the mantle!**

Would lead to very interesting results! (Fiorentini et al.)

BSE: 60-100 events/per year

Would be the ultimate geoneutrino experiment!