

Study of tau-neutrino production with nano-precision particle detector

Akitaka Ariga (PD. Dr.) University of Bern The DsTau Collaboration (spokesperson)

400 GeV proton interaction (test beam data)

200 µm

Tau neutrino

Standard Model of Elementary Particles

3rd generation of lepton

Predicted after discovery of tau in 1975

First direct observation in 2001 The last observed fermion

Neutrino oscillations $u_{\mu} \rightarrow v_{\tau}$ appearance in 2015

Lepton Universality

- Lepton Universality is a fundamental assumption of the Standard Model
- Three lepton families equally couple to weak boson

• Intensively tested, for example

$$\left(\frac{g_{\tau}}{g_{\mu}}\right)^4 = 0.178 \left(\frac{m_{\mu}}{m_{\tau}}\right)^5 \left(\frac{\tau_{\mu}}{\tau_{\tau}}\right) \implies \frac{g_{\tau}}{g_{\mu}} = 0.999 \pm 0.003$$

It was consistent with all experimental results,,, until recently

Hints of lepton universality violation

• Semi-leptonic decays of B meson prefers to decay into au and $u_{ au}$

- Data is discrepant from the SM prediction by four standard deviations
- $B_c^+ \rightarrow J/\psi \tau^+ \nu_{\tau}$ also has similar tendency (2 σ)
- → Flavour anomalies

New physics effect?

- There might be additional forces for between leptons and quarks, breaking Lepton Universality
- Several theoretical models.
 - Commonly discussed:
 W', H⁻ and LQ
- Intensively discussed in collider environment
- How about neutrino scattering?
 - New particles might affect tau neutrino cross-sections

Tau neutrino as a probe for new physics... The current status

- Neutrino interactions provide a complementary approach for flavour anomalies.
- Status: the neutrino deep-inelastic scattering cross-sections other than ν_{μ} are poorly investigated

- Precise measurement (10%) of tau neutrino cross-section might be a key for new physics search
 - >50% of v_{τ} production uncertainty \rightarrow DsTau
 - 30% of observed ν_{τ} statistics (10 events) \rightarrow Future experiments

Future tau neutrino experiments

- SHiP: high statistics v_{τ} measurement at the SPS beam dump facility at CERN
- FASER ν : high energy ν_{τ} measurements at the LHC.
- Long baseline neutrino oscillation experiments
 - DUNE, Hyper-K, SK
 - Tau neutrinos dominate the neutrino flux at the long baseline neutrino oscillation experiment
 - 90 % of neutrino flux is at oscillation maximum
 - v_{τ} is background to v_e , due to $\tau \rightarrow e$
- IceCube
 - Astrophysical v_{τ} neutrino measurement

Concept of v_{τ} cross section measurement (accelerator based)

v_{τ} production study: DsTau

- No experimental data on the Ds differential cross section
- Large systematic uncertainty (~50%) in the v_{τ} flux prediction

Statistical uncertainty 33% in DONUT

• Will be reduced to the 2% level in future experiments

The DsTau project at the CERN SPS (SPSC-P-354)

Goals

- Measurement of ν_τ production.
- Reduction of systematic uncertainty in the cross section measurement 50% \rightarrow 10%.
 - Fundamental input for future ν_τ experiment: ν_τ program in SHiP.
- Byproduct: charm physics, e.g. intrinsic charm component in proton.
- Principle of the experiment
 - Detection of double-kink + another decay topology within a few mm.
 - 2.3×10^8 proton interactions, 10^5 charm pairs, $1000 D_s \rightarrow \tau \rightarrow X$ decays.

Emulsion detector

A minimal detector:

Silverbromide (AgBr) Cristal

- diameter = 200 nm
- core-shell structure
- detection eff. = 0.16/crystal
- noise rate = 0.5x10⁻⁴/crystal
- volume occupancy = 30%

10¹⁴ crystals in a film

 $(44 \mu m)$

Emulsion layer (44µm)

TAC base (200μm)

Emulsion layer

Nucl. Instrum. Methods A 556 80 (2006)

Detection principle of emulsions

- 1. Ionization by a particle
 - band gap of 2.5 eV
- 2. Electrons trapped in a lattice defect on the surface of crystal
 - Attract interstitial silver ions
 - Making a "latent image" = Ag_n
 - n>=4, developable
- 3. Amplification of signal chemically
 - Development \rightarrow silver filaments
 - Gain 10⁷ 10⁸
- 4. Resolve crystal
- 5. Ready to observe under optical microscopes

20µm

high energy pion

Antiproton annihilation in emulsion

Antiproton annihilation taken in AEgIS 2012

antiproton

Glass base 1 mm

Emulsion layer (50 micron)

3D view of emulsion detector

- 3D high resolution hits
- Work as tracker
- dE/dx proportional to darkness (Number of grains)

Emulsion = a detector with high detection channel density

150 μm x 120 μm x 50 μm 1.2×10^8 channels (crystals) in this volume. 10^{14} channels in a film (12.5 cm x 10 cm). ATLAS-IBL pixel sensor FE-14

1 pixel = 250 μm x 50 μm x 200 μm

Sum of all channels in ATLAS = ~10⁸

High density of detection channels, O(10¹⁴) channels/cc, makes emulsion attractive for many purposes.

Scanning in Bern some time ago

F.G. Houtermans im Kreise seiner Scannerinnen im Physikalischen Institut Bern 1955/56

Emulsion detector readout was used to be analogue and laborintensive

Bern scanning station (2008-)

Emulsion detectors are no more an analog detector, but a digital detector.

Intrinsic resolution of emulsion detector

- Precision measurement of hits (5nm)
- Deviation of grains from a fit line
- Resolution was found to be 50 nm
 - 0.35 mrad angular resolution

High precision measurement of track angles

- Intrinsic resolution of each grain = 50 nm
 - Two grains on top and bottom of 200 μm base $\rightarrow 0.35$ mrad
 - Discrimination of 2 mrad at 4σ level
- A high precision system with a Piezo-based Z axis developmented

Piezo objective scanner

CERN SPSC Jan 2018

Module structure for $D_s \to \tau \to X$ measurement

Detector setup

Experimental setup at the H4 beamline Detector module Protons Beam size ~1 cm x 1 cm Target mover (motorized X-Y stage) Beam profile monitor (silicon pixel telescope) ATLAS IBL modules with FE-I4A chips

Signal and background

New method for Ds momentum reconstruction

 FL_{τ}

 θ_{X}

by Artificial Neural Network using topological variables

FL_{Ds}

FL: flight length

• Difficult to measure Ds momentum directly due to short lifetime

D,

Proton

- → Ds momentum reconstruction by topological variables
- A Neural Network with 4 variables was trained with MC events
- Momentum resolution for $\tau \rightarrow 1$ prong decays $\Delta p/p = 18\%$

Х

Status of the DsTau project

- Letter of Intent, Feb. 2016
 - Beam tests in Nov. 2016, May 2017
- Proposal (SPSC-P-354), Aug. 2017
- Presentation at the 128th Meeting of the SPSC (open session):
- Reviewed during the SPSC meeting, Jan. 2018
- \rightarrow Positive feedback
 - "The 2018 run has been approved and the Committee recommends that the beam time requested for 2021 will be granted."

Experiment Proposal

Study of tau-neutrino production at the CERN SPS

- S. Aoki¹, A. Ariga², T. Ariga^{2,3,*}, E. Firu⁴, T. Fukuda⁵,
- Y. Gornushkin⁶, A. M. Guler⁷, M. Haiduc⁴, K. Kodama⁸,
- M. A. Korkmaz⁷, U. Kose⁹, M. Nakamura⁵, T. Nakano⁵,
 - A. T. Neagu⁴, H. Rokujo⁵, O. Sato⁵, S. Vasina⁶,
 M. Vladymyrov², M. Yoshimoto¹⁰

Collaboration

Japan:

CERN-SPSC-2017-029 / SPSC-P-354 29/08/2017

CERN

Aichi University of Education Kobe University Kyushu University Nagoya University

Romania: Institute of Space Science

Russia: JINR-Joint Institute for Nuclear Research

Switzerland: University of Bern

Turkey: METU-Middle East Technical University

DsTau load map

Pilot run Emulsion film production

- Needed: 50 m² (4000 films) for pilot run •
- Shifts: 2 persons x ~10h/day x 11 weeks (June 4 August 17)
- Production speed: ~5 m²/week ٠

Detector modules

• 30 modules (131 films/module) prepared in total

Installation

Target mover

Silicon pixel profile monitor

Scintillator for intensity driven control

Exposure scheme

- Target mover (scanning on X)
 - 2016: moved at a constant speed during the spill
 - 2017, 2018: intensity driven control by scintillator counter (feedback each 0.2 sec)
- 0.5 1 hour per module

Scanning sequence of the target mover

Emulsion module exposure

- $10^5 \ protons/cm^2 \rightarrow 1.25 \times 10^7/module$
- 30 modules in total
- c.a. 18 million proton interactions in tungsten

We progressed quicker than planned, thanks to two Flat-Top in a Super Cycle.

The DsTau team participated in the campaign

Development in Bern, 8/28-10/4

- Total 4000 films
- max speed: 360 films/1.5 days.
- Tons of chemical was used.

Analysis scheme for double-kink search

Camer

- Full area scanning by the fast scanning system
- Select decays with $\Delta \theta > 20$ mrad

Hyper Track Selector (HTS)

Scanning speed 0.5 m²/h/layer Angular resolution ~2 mrad

Precision measurement to detect
 Ds -> τ decay (a few mrad)

Dedicated high-precision systems

Angular resolution ~0.3 mrad

Evolution of automated scanning system

Development of scanning system started in 1970s.

100 times faster than OPERA

Reconstruction of proton interactions

- Microscope data taking
 - Pixel size = 0.3 μm x 0.3 μm x 2 μm
- Data size
 - ~10 TB image data / film (125 cm²)
 - ~50 PB will be processed in the 2018 pilot run (50 m²)
 - 10 GB / film after compression to be stored
- Track density
 - OPERA: 100 tracks/cm2 in wide angular space (θ<500 rad)
 - DsTau: 100,000 tracks/cm2 in small angular space (θ<10 mrad)

Reconstructed tracks

Tracks starting after tungsten

Vertex reconstruction

A piece of data

Tracks 1 mm x 1 mm

Tracks emerging from tungsten target

Alignment of between emulsion films

- "Proton tracks run straight!"
 - scattering of 400 GeV proton is negligible
- Align films to minimize the displacement from the beam proton
- Position residual of track segments to a linear fit is < 0.4 μ m, depending on processing area size

Correct segment position

Proton beam angle structure

- Tracks reconstructed in 20 emulsion films, thickness of 1.1 cm
 - Expected angular resolution is 0.4 $\mu m \cdot \sqrt{2}/11000=51 \ \mu rad$
- An asymmetric structure in X and Y was observed.

Close look in the TY

TY:t.eY {nseg>=15&&abs(TY--0.022242)<0.001&&abs(TX-0.017)<0.001}

Data/MC, Track density evolution

- Data (2018) and FLUKA
- Track density evolution as a function of depth in the detector.
- In good agreement.

200 µm

Measured proton beam density in the analyzed region: 4.36x10⁵ beam tracks/3.61 cm²

Into	nteractions in a tungsten plate		
inter			N vertices
	Expected		1860
	Observed	With parent 1832	
		V	Vithout parent 130

Consistent with the expectation

Vertex multiplicity of proton interactions in tungsten plate

Refined vertexing/decay search are applied to sub sample of 2016 data

For example in a volume of 1.9 cm x 1.9 cm x 20 films: Possible beam track selection: <10 mrad from the peak \rightarrow 436674 tracks/(1.9 cmx1.9 cm) \rightarrow 2205 int. expected if all are protons

Double-decay topology event

(Video in ppt)

Kink

IP of daughter 291.6 μm

FL 2536.6 μm

kink angle 118 mrad

• Vee

____IP of daughters 20.9, 109.7 μm

• FL 554.5 μm

opening angle 242 mrad

Developing a new analysis scheme to analyze over 200 million proton interactions with an automated procedure

400 GeV proton

100 µm

Double charm candidates

cand_20190117_p11_61598.3_47632.7 C1+C1 candidate

cand_20190117_p11_61427.6_56633.2 C1+N2 candidate

Double charm candidates

cand_20190117_p11_71651.2_33380.6 C1+N2 candidate

More events are coming. 10⁴ double charm events are expected from the pilot run. We will analyze

- flight length (γ factors)
- angle between charm pairs

psuedrapidity distribution
 (to study intrinsic charm
 content in proton)

cand_20181205_p11_47291.8_32047.5 C1+N2 candidate

cand_20181205_p11_72182.0_63924.7 C1+N2 candidate

Summary

- A new precise measurement of the v_{τ} cross section is important
 - to test new physics effects in v_{τ} –nucleon CC interactions
 - for neutrino oscillation experiments and astrophysical \textbf{v}_{τ} observations
- The DsTau project has been proposed at the CERN SPS to study v_{τ} production (SPSC-P-354)
 - detect 1000 Ds $\rightarrow \tau$ decays in 2.3 × 10⁸ proton interactions employing emulsion detectors with a spatial resolution of 50 nm
 - reduce the systematic uncertainty in the v_τ cross section measurement from >50% to 10%
- Pilot run in 2018 successfully performed, analysis is under way.
 - Data/MC comparison, ok
 - Systematic double charm event search, ok.
 - Physics publication(s) soon.
- Physics run in 2021-

Thank you for your attention

Future experiments with emulsion

OPERA technology

New technology

Physics experiments

- Neutrino oscillation
- Neutrino Cross-section
- Lepton Universality (v_e v_{μ} - v_{τ})
- Hadron physics
- Charm physics
- Antimatter
- Double hyper nuclei

			A KARANA MARANA A ARABITA		
の時代の	Accelerator	Medical application	Geosciences	Astronomy	Dark matter
No. of the second se	 beam monitoring Muon beam study in neutrino beamline 	 neutron source imaging proton radiography 	 muon radiography Volcanoes Glaciers 	• Gamma-ray telescope	• Directional sensitivity

Nuclear emulsion gel produced at Nagoya University

(development and production since 2010)

- Emulsion gel tuned for each experiment (Sensitivity, crystal size, and silver halide density)
- Crystal growth of AgBr·I in gelatin solution by double jet method (addition speed, temperature, and mixing speed are controlled)
- Sensitization is done after crystal growth and desalination.
- Emulsion gel for ~3 m² emulsion film can be produced in a day.

Ultra Fine Grain Emulsion For Directional Dark Matter Search

Nuclear emulsion

Range < 1μ m

Fine grain crystals produced in Nagoya University

For dark matter

500nm

Development of extra-large crystals for Fast Readout

- To speed up readout speed
- Succeeded to produce 1,200nm crystal! (standard size = 200nm)
 - →Magnification of objective lens can be lower by a factor of 6.
 - →Naively **36 times faster** to read out.
- Enough sensitive to MIP
- The long term stability is not yet satisfactory

HTS : the fastest emulsion readout system

- HTS has a capability to read-out 1000 m²
 - with wide field lens, multi-sensors, and GPUs.
 - 20 Giga-Bytes/sec or 2 Peta-Bytes/day

GRAINE project Precise observation of high-energy gamma-rays Gamma-Ray Astro-Imager with Nuclear Emulsion Exploring extreme universe by balloon-borne emulsion telescope PI: S. Aoki (Kobe Univ). Aichi Univ of Education, ISAS/JAXA, Kobe Univ, Nagoya Univ, Okayama Univ of Science

Converter

(Emulsion film stack

limestamper Multi-stage shifter)

Calorimeter

Simulation Supernova remnant, W44

1/100mm Microscopic view of an emulsion film

Precisely tracking e-pairs w/i 1µm suppressed multiple Coulomb scattering \rightarrow High angular resolution → Polarization sensitive

+Automatic large-area-analysis technique +Timestampingtechnique

2018 balloon-borne experiment

Overall demonstration of emulsion telescope

Detecting and imaging a γ -ray source, Vela pulsar

Emulsion telescope

✓ High angular resolution (0.1deg@1GeV) Polarization sensitive

Large aperture (10m²)

(Emulsion & Metal plate stack) BG photo: GRAINE 2011, JAXA scientific ballooning (taken by NHK)

Time stamping by emulsion

- Get time stamp only with emulsion detectors
- Time resolution of 0.1 sec achieved by GRAINE gamma ray telescope

Main detector (emulsion)

Time sta<mark>mper</mark> (emulsion)

Position difference between two module gives time stamp as

$$t = \frac{\delta x}{v}$$

GRAINE project, Kobe and Nagoya

Time resolution of 0.1 sec achieved (v = 50 μm/s)

Muon radiography with emulsion

• Measurement of inner structure of large object by means of cosmic-rav muons.

Tomography of glaciers in Swiss Alps

Summary 2

- Emulsion detectors are no more an analogue device, but a digital high precision detector.
- Wide range of applications, where a high resolution and/or large detector surface are required.
- An large flexibility and capability to develop new.

Charm production cross section results

 $\frac{d^2\sigma}{dx_F dp_T^2} \propto (1 - |x_F|)^n \exp(-bp_T^2)$

Experiment	Beam type / energy (GeV)	σ(D _s) (μb/nucl)	σ(D [±]) (μb/nucl)	σ(Dº) (μb/nucl)	σ(Λ _c) (μb/nucl)	x _F and p _T dependence: <i>n</i> and <i>b</i> (GeV/c) ⁻²
HERA-B	p / 920	18.5 ± 7.6 (~11 events)	20.2 ± 3.7	48.7 ± 8.1	-	n(D ⁰ , D ⁺) = 7.5 ± 3.2
E653	p / 800	-	38 ± 17	38 ± 13		n(D ⁰ , D ⁺) = 6.9 ^{+1.9} _{-1.8} b(D ⁰ , D ⁺) = 0.84 ^{+0.10} _{-0.08}
E743 (LEBC-MPS)	p / 800	-	26 ± 8	22 ± 11		n(D) = 8.6 ± 2.0 b(D) = 0.8 ± 0.2
E781 (SELEX)	Σ ⁻ (sdd) / 600					~350 D_s^- events, ~130 D_s^+ events ($x_F > 0.15$) n(D_s^-) = 4.1 ± 0.3 (leading effect) n(D_s^+) = 7.4 ± 1.0
NA27	p / 400		12 ± 2	18 ± 3		
NA16	p/360		5 ± 2	10 ± 6		
WA92	π / 350	1.3 ± 0.4		8 ± 1		
E769	p / 250	1.6 ± 0.8	3 ± 1	6 ± 2		320 ± 26 events (D [±] , D ⁰ , D _s [±]) n(D [±] , D ⁰ , D _s [±]) = 6.1 ± 0.7 b(D [±] , D ⁰ , D _s [±]) = 1.08 ± 0.09
E769	π [±] / 250	2.1 ± 0.4		9 ± 1		1665 ± 54 events (D [±] , D ⁰ , D _s [±]) n(D [±] , D ⁰ , D _s [±]) = 4.03 ± 0.18 b(D [±] , D ⁰ , D _s [±]) = 1.08 ± 0.05
NA32	π / 230	1.5 ± 0.5		7 ± 1		

(Results from LHCb at \sqrt{s} = 7, 8 or 13 TeV are not included since the energies differ too much)

No experimental result effectively constraining the D_s differential cross section at the desired level or consequently the v_{τ} production

2018/1/23

Expected performance

Incertainties in he cross section measurement		DONuT t	Systematic uncertainty after DsTau outcome	Future $ u_{ au}$ measurement with DsTau outcome
	ν_{τ} statistics	0.33		0.02
	D _s differential cross section (x _F dependence)	>0.50	0.10	0.10
	Charm production cross section	0.17		
	Decay branching ratio (D_s $ ightarrow \tau$)	0.23 (0.04 at present)	0.05	0.05
	Target atomic mass effects	0.14		

Aiming at ~10% precision to look for new physics effects in v_{τ} -nucleon CC interactions

Efficiency of $D_s \to \tau \to X$ detection

Selection	Total efficiency (%)
(1) Flight length of $D_s \ge 2$ emulsion layers	77
(2) Flight length of $\tau \ge 2$ layers & $\Delta \theta(D_s \rightarrow \tau) \ge 2$ mrad	43
(3) Flight length of D _s < 5 mm & flight length of τ < 5 mm	31
$(4) \Delta \theta(\tau) ≥ 15 mrad$	28
(5) Pair charm: 0.1 mm < flight length < 5 mm (charged decays with $\Delta \theta$ > 15 mrad or neutral decays)	20

