

PARIS

université

The world's most powerful microscope for studying the "glue" that binds the building blocks of visible matter

Summary Talk of Parallel Sessions Theory Talks, Tuesday & Thursday

Bruno El-Bennich

Laboratório de Física Teórica e Computacional Universidade Cruzeiro do Sul, São Paulo

Instituto de Física Teórica Universidad Estadual Paulista, São Paulo

DO ESTADO DE SÃO PAULO

RCNPq

Conselho Nacional de Desenvolviment Científico e Tecnológico

Richard Williams — "Topics in QCD from Dyson-Schwinger Equations"

Switching from 2PI-2loop (Rainbow-Ladder) to 3PI-3loop

- Corrects ρa_1 splitting and degeneracy of axial-vectors.
- Pushes lightest qq scalar above 1 GeV.

Interaction vertices explicit d.o.f in 3PI approach. Less modelling. Parameters are coupling g and the quark masses m_i.

Richard Williams — "Topics in QCD from Dyson-Schwinger Equations"

Bound-state resonances:

(Euclidean) bound-state pole found in 2nd Riemann sheet, as expected.

Wim Cosyn — "Probing transversely GPDs in diffractive electroproduction on the proton and deuteron at an EIC"

Diffractive electroproduction of two vector mesons

- Two vector mesons are separated by large rapidity gap
- Ordering of scales: invariant mass of two vector mesons $s_1 \gg$ hadron- (ρ^+/ω) invariant mass $s_2 \sim p^2 \gg \Lambda_{QCD}$
- Pomeron \rightarrow two gluon exchange
- No gluon contribution as Pomeron is C-even
- Polarization V₂ determines chiral even or odd GPD entering
- All the hard work already done for the nucleon in
 D.Yu. Ivanov, B. Pire, L. Szymanowski, PLB550 '02
 - R. Enberg, B. Pire, L. Szymanowski, EPJC47 '06
- Extension for deuteron straightforward: ω and ϕ ($s \bar{s}$) production

Wim Cosyn — "Probing transversely GPDs in diffractive electroproduction on the proton and deuteron at an EIC"

 $\gamma_{L/T}d \rightarrow d\rho_L^0 \omega_T^0$ **PRELIMINARY**

Chiral odd deuteron GPD

Calculation at $\xi_D = 0.15$, $t \approx t_{\rm min} = -0.33 \ {\rm GeV}^2$

Cédric Mezrag - "New Modelling Techniques for GPDs"

GPDs theoretical constraints

• Polynomiality:

• Positivity:

• Support:

Soft Pion theorem

Istituto Nazionale di Fisica Nucleare

Lorentz Covariance

Positivity of Hilbert space norms

Relativistic Quantum Mechanic

PCAC and Axial-Vector WTI

Problems

There is no model (until now) fulfilling a priori all these constraints People usually choose to fulfil either **polynomiality** or **positivity** \rightarrow violation of either Lorentz covariance or Hilbert space properties

Cédric Mezrag (INFN)

Modelling GPDs

July 23rd 2019 2 / 3

 $\mathcal{A} \mathcal{A} \mathcal{A}$

토 🕨 🖌 토 🕨

< □ > < □ > <

Cédric Mezrag - "New Modelling Techniques for GPDs"

Both positivity and polynomiality are fulfilled

Eur.Phys.J. C77 (2017) no.12, 906 Phys.Lett. B780 (2018) 287-293

▲□▶ ▲圖▶ ▲필▶ ▲필▶ - 필

Modelling GPDs

July 23rd 2019 3 / 3

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Cédric Lorcé — "Mechanical Properties of Hadrons"

Bare QCD energy-momentum tensor

$$T^{\mu\nu} = \overline{\psi}\gamma^{\mu}\frac{i}{2}\overleftrightarrow{D}^{\nu}\psi - G^{a\mu\alpha}G^{a\nu}_{\ \alpha} + \frac{1}{4}\eta^{\mu\nu}G^2$$

Renormalized trace of the QCD EMT

- Key information about the structure encoded in EMT
- Breit frame defines the spatial distribution at rest
- Mechanical properties can be expressed in terms of spatial moments Mass, pressure, moment of inertia, ...

Cédric Lorcé — "Mechanical Properties of Hadrons" Spin-1/2

$$\langle p', s' | T_a^{\mu\nu}(0) | p, s \rangle = \overline{u}(p', s') \Gamma_a^{\mu\nu}(P, \Delta) u(p, s)$$

$$M = U_q + U_g \qquad p_q = -p_g$$
$$\mu = 2 \,\text{GeV} \qquad \sim 44\% \sim 56\% \qquad \sim 11\%$$

Cédric Lorcé — "Mechanical Properties of Hadrons"

Adam Freese — "Gravitational Form Factors of Mesons and Proton"

Gravitational form factors and the EMT

• **Gravitational form factors** encode information in the energy-momentum tensor (EMT):

$$\langle p'\lambda' \mid T^{q}_{\mu\nu}(0) \mid p\lambda \rangle = \bar{u}^{\lambda'}(p') \left[\gamma_{\{\mu}P_{\nu\}}A^{q}(t) + \frac{iP_{\{\mu}\sigma_{\nu\}\Delta}}{2m_{N}}B^{q}(t) + \frac{\Delta_{\mu}\Delta_{\nu} - \Delta^{2}g_{\mu\nu}}{4m_{N}}C^{q}(t) + m_{N}g_{\mu\nu}\bar{c}^{q}(t) + \frac{iP_{[\mu}\sigma_{\nu]\Delta}}{2m_{N}}D^{q}(t) \right] u^{\lambda}(p)$$

• Three of the GFFs accessible through GPDs:

$$\int dx \, x H^q(x,\xi,t) = A^q(t) + \xi^2 C^q(t) \,, \qquad \int dx \, x E^q(x,\xi,t) = B^q(t) - \xi^2 C^q(t) \,,$$

- GFFs encode information about distribution of energy, angular momentum, and forces.
- Cannot do graviton-exchange experiments—but GPDs allow GFFs to be experimentally accessed! (DVCS, DVMP, ...)

Adam Freese — "Gravitational Form Factors of Mesons and Proton"

C(t) encodes **pressure distribution** (see Peter Schweitzer's talk)

- C(0) not constrained by conservation laws
- C(0) < 0 is a stability condition
- C(t) is affected by quark GPD dressing, but not A(t) or B(t)

- C(0) = -0.94 < 0 in the NJL model
- Ignoring quark GPD dressing gives C(0) = 0.97 > 0
- Proton stability appears to **require** dressing the quark GPD!

Ξ.

500

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Peter Schweitzer — "D-Term of Nucleon"

D-term of nucleon

Peter Schweitzer, UConn

- energy-momentum tensor $T^{\mu
u}$ fundamentally important

nucleon matrix elements of $T^{\mu
u}$ ightarrow 3 EMT form factors A(t), J(t), D(t)

constraints: **mass** \Leftrightarrow $A(0) = 1 \Leftrightarrow$ quarks + gluons carry 100% of nucleon momentum

spin \Leftrightarrow $J(0) = \frac{1}{2} \Leftrightarrow$ quarks + gluons carry 100% of nucleon spin

D-term \Leftrightarrow $D(0) \equiv D \rightarrow$ unconstrained! Last global unknown!

- theory: free fermion D = 0 i.e. *D*-term 100% dynamic effect! Hudson, PS PRD97 (2018) 056003
- interaction $\rightarrow D \neq 0$ chiral quark soliton Goeke et al, PRD75 (2007) 094021 agrees with lattice & disp. relation

 $\pi^0 D^Q \approx -0.7$ from Belle data on $\gamma \gamma^* \rightarrow \pi^0 \pi^0$ in e^+e^- Kumano, Song, Teryaev, PRD97 (2018)

nucleon *D* from DVCS data from subtraction term in fixed-*t* dispersion relation of Re, Im part of DVCS amplitude (accessible *under assumptions* at this point) Burkert, Elouadrhiri, Girod, **Nature** 557, 396 (2018) K. Kumerički, **Nature** 570, 7759 (2019)

• explore scale dependence at EIC extract D(t) (!) (vs A(t) and J(t) much harder) learn about forces inside hadrons!!

interpretation M.V.Polyakov (2003) shows how interpal force

shows how internal forces balance related to *D*-term stability $\int_0^\infty dr \ r^2 p(r) = 0$ $D = 4\pi m \int_0^\infty dr \ r^4 p(r) < 0$

review: M.V.Polyakov, PS, Int.J.Mod.Phys.A **33**, 1830025 (2018) [arXiv:1805.06596]

Ian Cloët — "Gluon Content of the Pion and Kaon at the EIC"

Pion PDFs – Self-Consistent DSE Calculations

To self-consistently determine hadron PDFs in rainbow-ladder must sum all planar diagrams

$$q(x) \propto \operatorname{Tr} \int \frac{d^4 p}{(2\pi)^4} \,\overline{\Gamma}_M(p,P) \,S(p)$$
$$\times \,\Gamma_q(x,p,n) \,S(p) \,\Gamma_M(p,P) \,S(p-P)$$

- OSEs are formulated in Euclidean space evaluate q(x) by taking moments
- The *hadron dependent* vertex $\Gamma_q(x, p, n)$ satisfies an inhomogeneous BSE
- However can define a *hadron independent* vertex $\Lambda_q(x, p, n)$

$$\Gamma_q(x, p, n) = \iint dy \, dz \, \delta(x - yz) \, \delta\left(y - \frac{p \cdot n}{P \cdot n}\right) \Lambda_q(z, p, n)$$

 $\Lambda_q(x, p, n) \text{ satisfies the inhomogeneous BSE}$ $\Lambda_q(z, p, n) = iZ_2 \not n \, \delta(1-z) - \iint du \, dw \, \delta(z-uw) \int \frac{d^4\ell}{(2\pi)^4} \delta\left(w - \frac{\ell \cdot n}{p \cdot n}\right) \\ \times \gamma_\mu \, \mathcal{K}_{\mu\nu}(p-\ell) \, S(\ell) \, \Lambda_q(u,\ell,n) \, S(\ell) \, \gamma_\nu$

Ian Cloët — "Gluon Content of the Pion and Kaon at the EIC"

PDFs of a Dressed Quark Hadron independent vertex has form $f_1(z,p^2) \ [{ m GeV}^0] \ [{ m GeV}^0]$ 2 $\Lambda_q(z, p, n) = i \not n \, \delta(1 - z) + i \not n \, f_1^q(z, p^2)$ $+ n \cdot p \left[i p f_2^q(z, p^2) + f_3^q(z, p^2) \right]$ • the functions $f_i^q(z, p^2)$ can be interpreted as unpolarized PDFs in a dressed quark 0 of virtuality p^2 p^2 These functions are universal – appear in all **RL-DSE** unpolarzied PDF calculations -0.8

- heavier s quark support nearer z = 1
- WIA $\implies \Lambda_q(z, p, n) \propto \delta(1-z)$
- Renormalization condition means dressing functions vanish when $p^2 = \mu^2$

Ian Cloët — "Gluon Content of the Pion and Kaon at the EIC"

0.4

0.2

0

0

0.2

0.4

Self-Consistent DSE Results

- For pion and kaon PDFs included for first time gluons self-consistently
 - correct RL-DSE pion PDFs in excellent argeement with Conway et al. data and recent JAM analysis
 - agrees with $x \to 1$ pQCD prediction
- Treating non-perturbative gluon contributions correctly pushes support of $q_{\pi}(x)$ to larger x
 - gluons remove strength from $q_{\pi}(x)$ at low to intermediate x – baryon number then demands increased support at large x
 - cannot be replicated by DGLAP DSE splitting functions are dressed
- *Immediate consequence of gluon* dressing is that gluons carry 35% of pion's and 30% of kaon's momentum

EICUG Meeting 2019 13/13

0.8

0.6

X

Raul Briceño — "QCD Spectroscopy on the Lattice"

Scalar $\pi\pi$ -*KK*

Raul Briceño — "QCD Spectroscopy on the Lattice"

Salvatore Fazzio - "Support of Partonic Spatial Imaging at EIC"

Salvatore Fazzio — "Support of Partonic Spatial Imaging at EIC"

Goals (needed to fully exploit EIC data):

- Include mesons in global fits (flavor separation, precision in constraining gluons GPDs)
- Assess the sensitivity to extract "D-term", related to distribution of forces inside the nucleon
- Extract neutron GPDs (via measuring DVCS on D/He3)
- Refine tools to study of GPDs in nuclei (and possible gluon saturation effects)
- Fully develop common software platforms (E.g. PARTONS)
- Go beyond: Can access gluon elliptic Wigner fcn. At EIC?
- Very engaged Community, stay tuned!

