

Development of Ultra-Fast Silicon Detectors (UFSDs) for particle identification using TOPSiDE at the EIC

Manoj Jadhav, José Repond, Jessica Metcalfe, Taylor Shin, Sergei Chekanov

Argonne National Laboratory

July 25, 2019

2019 Electron-Ion Collider User Group Meeting, Paris

Outline

- **TOPSiDE Concept**
- Motivation for TOPSiDE
- Ultra-Fast Silicon Detector for the EIC
- Low-Gain Avalanche Detector Design Simulations
- Readout Design Development
- Testing of LGADs at Argonne
- Test Beam Results for LGADs
- Validation of Concept PENTACAL
- Summary

TOPSiDE concept

- 5-dimensional information (E, x, y, z, t)
 - Silicon tracker+Calorimeter
 - Particle identification

Eliminates the need for preshower counters, TRDs, TOF or Čerenkov in front of Calorimeter, and muon chambers in back

- **TOPSiDE Sub-Detectors**
- Silicon Pixel Vertex
- Silicon Strip Tracker
- Silicon Imaging EM Calorimeter
- Imaging Hadron Calorimeter
- Superconducting Solenoid (3T)
- Forward gaseous RICH
- Forward Dipole + Cloak or Toroid w/o Cloak
- Forward Silicon Disks
- Forward Calorimeter
- Backward Silicon Disks
- Backward Crystal Calorimeter

Motivation for TOPSiDE

Particle Identification:

- Particle momenta < 7 GeV/c
 - most of the solid angle
- Separation of pion-kaon-proton
 - ➡ Silicon sensor with time resolution of ~ 10 ps
 - ➡ Good separation up to 7 GeV/c
 - ➡ Even with 20 ps; good separation up to 5 GeV/c

Beauty of TOPSiDE

- Minimal number of different detector technologies
 - Silicon, UFSD, Photo sensors for RICH, Xtal calorimeter + forward/backward system
- Simple design, low material budget
 - Minimal amount of dead material in front of the calorimeter (do not have preshower counters, TRDs, TOF or Cherenkov)
 - Better photon detection (DVCS)
- Measurement and identification of all particles individually
- Optimized for particle flow algorithms

Motivation for UFSDs

- Low-Gain Avalanche Diode (LGAD)
 - EM Calorimeter + silicon tracker
 - Separation of π K p for particle identification
- Internal gain layer (similar to Avalanche Photo Diode)
 - → $n++(N^+) p+(P) p(\pi)$ structure
- High E-field in gain region
 - multiplication process provides gain
- Moderate gain of 10-70 w/o breakdown
 - increases signal-to-noise ratio (SNR)
- Improvement in time resolution
 - 18 ps with 35 μm thick LGAD sensor
 - more thinner sensor 20 μm
- Worldwide effort: ATLAS, CMS, EIC
 - UC Santa Cruz, Kansas, Torino, Geneva, CERN, Bologna, BNL and now Argonne

LGAD Sensor Simulations

- TCAD simulation ATLAS Silvaco
- Sensor Design
 - Nominal 50 μm
 - ➡ 5 guard rings
 - pixel size of 1 × 1 mm²
 - ➡ Bias Voltage ~ 200 Volts
- In the future will integrate readout electronics using HV-CMOS (PicoPix)
 - Silicon sensor will accommodate readout

Readout Development

Layout Design

- The first stage includes preamplifiers, shaper, constant fraction discriminator
 - Being prototyped on PCB board before implementation on to pixel
 - TDC not included
- Fabrication of 10 CFD v1 boards complete and one board assembled
- FPGA Ultra 96 programmable for upto 4 channels

Characterisation of LGADs

FBK sensors

9/15 Manoj Jadhav

50

45

-350

35

40

-400

-450

UFSD - Setup

LGAD Measurement Setup

Beta Telescope at ANL

- Timing measurements for Minimum Ionising Particles (MIPs)
 - β particles from Sr⁹⁰ source
- Analog read-out board Discrete amplifier
 - ➡ 50 ohm i/p impedance, bandwidth > 1 GHz
- Pulse signal collected with KEYSIGHT oscilloscope
 - Events recorded using PyVisa
 - Data stored in root files
- Argonne Micro-Assembly Facility (AMAF)
 - Clean room facility at Argonne
 - Environmental Chamber for low temperature measurements

UFSD - Beta Telescope

Measurements with Beta-telescope

Manoj Jadhav 🦊

11/15

UFSD - Test Beam

Fermi-Lab Beam Test Setup

UFSD - Test Beam

Measurements with Proton Beam

- Proton Beam, 120 GeV *
- LGAD sensors separated by 1 cm *
- data taken at different temperature *
 - Room temperature to -10 °C (inside cold box)
- Example data shown for 50 µm HPK LGAD
 - Time resolution of 42 ps at room temperature

More data to be analysed! *

CFD_det[50] - CFD_trg[20]

UFSD - PENTACAL

Validation of Concept - PENTACAL

5D Electromagnetic Calorimeter

- Structure
 - 20 active layers
 - Interleaved with Tungsten (smaller Moliere radius)
 - Copper sheets efficient cooling
- 5D information
 - Position (x,y,z), energy, and precision time
- Active layers
 - ➡ 8" wafers total area 324 cm²
 - $1 \times 1 \text{ mm}^2$ pixels
 - Number of pixels per wafer 32,400
 - ➡ Total number of readout channels 650,000
- Cooling estimate
 - ➡ 500 mW/cm² -> 90 W/layer
 - 1800 W/Calorimeter; total power consumption
- COMPASS++ (AMBER) at CERN is also interested in this technology

Δ

Summary

- TOPSiDE with precision timing
 - Reconstruction and identification of all particles produced in collisions
 - Separation of π K p for particle identification
- UFSD LGAD sensors as timing detector can play a major role
- LGAD sensor with integrated readout circuitry PicoPix
 - The sensor simulation is done
 - The readout design is complete
 - The first iteration is fabricated with PCB CFD Board
- LGAD sensors from HPK, BNL, FBK
 - Characterisation for IV and CV measurements
 - Beta telescope testing
 - Test Beam at Fermi lab for temperature dependence
- More data to be analysed!
- PENTACAL
 - Validation of concept with 5D electromagnetic calorimeter prototype

Back-Up

UFSD - TOPSiDE

Motivation for TOPSiDE

Particle Identification:

X100

- Particle momenta < 7 GeV/c*
 - most of the solid angle
- Separation of pion-kaon-proton *
 - Silicon sensor with time resolution of $\sim 10 \text{ ps}$
 - Good separation up to 7 GeV/c

Pions

2

3

0 0 HOH

5

6

8

Momentum [GeV/c]

9

Manoj Jadhav

17/15

4

Kaons 75 $\sigma_t = 5 \text{ ps}$ 50 25 Pions Momentum [GeV/c]

CFD Circuit Design

Manoj Jadhav 18/15

Ultra Fast Silicon Detector - LGAD UFSDs for Timing Measurements at EIC July 25, 201

ATLAS R&D for UFSD-LGADs

Manoj Jadhav 19/15

Ultra Fast Silicon Detector - LGAD

Measurements with Beta-telescope

- Measurements for LGAD sensors
 - ➡ HPK, BNL, and FBK for different bias voltages
- ♦ A fast HPK LGAD trigger ~ 16.5 ps
 - Coincidence for event selection
- Example data shown for 2 sensors; HPK and BNL
 - ➡ At room temperature and -30 °C

Manoj Jadhav