Studies of partonic spatial imaging at an Electron-Ion Collider - current status and future plans -

Salvatore Fazio Brookhaven National Lab

EIC Users' Group Meeting Paris, France 23-27 July 2019

BROOKHAVE

Multi-dimensional Imaging of Quarks and Gluons

Direct access to gluon elliptic Wigner fcn. for gluons through diffractive di-jets measurements at an EIC under investigation Yoshitaka Hatta, Bo-Wen Xiao, and Feng Yuan [Phys. Rev. Lett. 116, 202301 (2016)]

H. Mäntysaari, N. Mueller, B. Schenke [arXiv:1902.05087]

23 July 2019

Generalized Parton Distributions

See P. Sznajder's plenary talk

The nucleon (spin-1/2) has **four quark and gluon GPDs** (H, E and their polarized-proton versions \tilde{H} . \tilde{E}). Like usual PDFs. GPDs are non-perturbative functions **defined via the matrix**

$$\begin{aligned} \mathbf{F}^{q} &= \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ix\bar{P}^{+}z^{-}} \langle p' | \bar{q}(-\frac{1}{2}z) \gamma^{+}q(\frac{1}{2}z) | p \rangle |_{z^{+}=0,\mathbf{z}=0} \\ &= \frac{1}{2\bar{P}^{+}} \left[\frac{H^{q}(x,\xi,t,\mu^{2}) \bar{u}(p') \gamma^{+}u(p) + E^{q}(x,\xi,t,\mu^{2}) \bar{u}(p') \frac{i\sigma^{+\alpha}\Delta_{\alpha}}{2m_{N}} u(p) \right] \end{aligned}$$

Accessing the GPDs in exclusive processes

S. Fazio (BNL)

Exclusive Vector Meson and real photon production

DVCS:

- Very clean experimental signature
- No VM wave-function uncertainty
- Hard scale provided by Q²
- Sensitive to both quarks and gluons [via Q² dependence of xsec (scaling violation)

DVCS on a real neutron target \rightarrow polarized Deuterium or He³

VMP:

- Uncertainty of wave function
- J/Psi → direct access to gluons, c+bar-c pair produced via quark(gluon)-gluon fusion
- Light VMs → quark-flavor separation

Alternative/complementary way to quark-flavor separation

DVCS at an **EIC**

- t-slope: b=5.6 compatible with H1 data
- |t|-binning is (3*resolution)
- 5% systematic uncertainties

$$\int L = 10 f b^{-1}$$

- Measurement dominated by
- Fine binning in a wide range of x-Q² needed for GPDs
- Fourier transform of $d\sigma/dt \rightarrow$ partonic profiles

Transverse target-spin asymmetry

 $L=100fb^{-1}$

[E.C. Aschenauer, S. F., K. Kumerički, D. Müller JHEP09(2013)093]

Transversely polarized protons: $sin(\Phi_T - \phi_N)$ gives access to GPD E Access to orbital angular momentum through "Ji sum rule"

 $\sum_{q=u,d,s} J^q \left(Q^2 \right) + J^G \left(Q^2 \right) = \frac{1}{2}\hbar$

[X.D. Ji, Phys. Rev. Lett. 78, 610 (1997)]

DVCS-based imaging

A global fit over all mock data was done, based on: [Nuclear Physics B 794 (2008) 244–323]
 Known values q(x), g(x) are assumed for H^q, H^g (at t=0 forward limits E^q, E^g are unknown)

E.C. Aschenauer, S. F., K. Kumerički, D. Müller, JHEP09(2013)093

S. Fazio (BNL)

Spatial Imaging – as in the EIC White Paper

Impact of EIC (based on DVCS only):

- ✓ Excellent reconstruction of H^{sea}, and H^g (from dσ/dt)
- ✓ Reconstruction of sea-quarks GPD E

Other capabilities still to be evaluated?

- GPD H-Gluon is nice but can be much better by including J/ψ
- Access to GPD E-gluon \rightarrow orbital momentum (Ji sum rule)
- Flavor Separation of GPDs (VMP and/or DVCS on deuteron)
 - Nuclear imaging (modification of GPDs in p+A collisions)

Time to move on...

How to separate flavors?

Hard Exclusive Meson Production (HEMP) → a powerful tool!

quantum numbers of final state 📥 select different GPD

DVCS

 $H^q E^q \widetilde{H^q} \widetilde{E^q}$

pseudo-scalar mesons

 $\widetilde{H^q}$ $\widetilde{E^q}$ π⁰ $2\Delta u + \Delta d$ η $2\Delta u - \Delta d$

 $H^q E^q$

DVCS on protons and neutrons also separates quark u/d flavors

• We do not have a real neutron target \rightarrow Use Deuterium

Imaging gluons with J/ψ

EIC White Paper

$\int L = 10 \, f b^{-1}$

Challenges of VMP

- Uncertainty on wave function
- measuring muon vs electron decay channel

We simulated the J/ψ cross section and the Fourier transform but never included it on GPDs fits

- Measurement dominated by systematics at low |t|
- Large-|t| spectrum would benefit of collecting more luminosity

Only possible at EIC: from valence quark region, deep into the sea!

Series of workshops organized aiming at future studies

Next-generation GPD studies with exclusive Center for Frontiers in Nuclear Science
Meson production at EIC

CFNS – Stony Brook U., 4-6 June 2018 https://indico.bnl.gov/event/4346/

Prospects for extraction of GPDs from global fits of current and future data

22-25 January 2019 Heavy Ion Laboratory (Cyklotron) Europe/Warsaw timezone Warsaw – NCBJ, 22-25 January 2019 https://events.ncbj.gov.pl/event/8/

Next-level impact studies need GPD-based NLO models which include mesons!

Aim for GPD extraction with uncertainties

• Common shared platforms (E.g. PARTONS by H. Moutarde et al.) can play important role in integrating GPD efforts at JLab12 and EIC

Imaging the gluons in nuclei

Diffractive physics in eA

- → Measure spatial gluon distribution in nuclei
- → Reaction: $e + Au \rightarrow e' + Au' + J/\psi, \phi, \rho$
- \rightarrow Momentum transfer $t = |p_{Au}-p_{Au'}|^2$

T. Toll, T. Ullrich, Phys.Rev. C87, 024913 (2013)

→ Veto breakup through neutron detection

23 July 2019

- Lumpiness of source?
- > Just Wood-Saxon+nucleon $g(b_T)$
- coherent part probes "shape of black disc"
- \Box incoherent part (large *t*) sensitive to "lumpiness"
- of the source [= proton] (fluctuations, hot spots, ...)

Measuring neutron via spectator tagging

- Possibility to study neutron structure
- DVCS on neutron compared to proton is important for flavor separation
 Using a Deuteron is the simplest case:
 DVCS on incoherent D (D breaks up) but coherent
 on the neutron, the "double tagging" method
 - Tag DIS on a neutron (by the ZDC)
 - Measure the recoil proton momentum
 - The recoil proton momentum cone is
 - $lpha_R = ig(E_R + p_{R||}ig)/ig(E_D + p_{D||}ig)$ and p_{RT}
 - Gives you a free neutron structure, not affected by final state interactions

Polarized He3 also experimentally easy but more complex theoretically

Luminosity & detector requirements

Luminosity requirements:

- xSec \rightarrow 10 fb⁻¹ -> enough for a good constrain of GPD H
- Asymmetries + Heavy Mesons --> 100 fb⁻¹ -> Essential for Eg
- Need for **100fb**⁻¹ dedicated run with transversely pol. Protons
- Two energies can cover the whole phase space
- 200 fb⁻¹ (scanning two Vs) will be needed for the W.P.'s GPDs program on e+p collisions

Requirements for forward spectrometers:

- |t| coverage in forward spectrometers -> crucial
- Largest possible geometrical acceptance → important to meet the lumi requirements

EMCal:

• Discriminate a pair of photon clusters at angles > 40 mrad \rightarrow suppress $\pi^0 \rightarrow \gamma \gamma$

ZDC:

- Acceptance for neutrons down to $\theta = 6 \text{ mrad} \rightarrow \text{Crucial to veto nuclear breakup}$
 - -> Coherent xSec in heavy ions
 - -> Double tagging in D and He3 -> neutron GPDs

Direct access to Wigner function

Process: exclusive di-jet production First proposed in e+p scattering by:

Yoshitaka Hatta, Bo-Wen Xiao, and Feng Yuan,

Phys. Rev. Lett. 116, 202301 (2016)

Later extended to UPC:

Y. Hagiwara, Y. Hatta, R. Pasechnik, M. Tasevsky, and O. Teryaev Phys. Rev. D 96, 034009 (2017)

- New important peace of EIC physics beyond the W.P.!
- EIC impact studies still be done

Summary on GPDs

e+p(A) physics program at EIC provides an unprecedented opportunity to study quarks and gluons in free protons and nuclei

- ✤ The "old" studies from the EIC WP era... (DVCS)
- Accurate 2+1D imaging of the polarized and unpolarized quarks and gluons inside the hadrons, and their correlations
- Investigate proton-spin decomposition (total orbital angular momentum)

Luminosity Requirements

 A total of 200fb⁻¹ collected at a lower and a top Vs energy needed cover the W.P.'s GPDs program on e+p.

New excitement ahead

- Fully develop common framework platforms
- Include mesons in global fits (flavor separation, precision on gluons)
- Study of GPDs in nuclei (and possible gluon saturation effects)
- Gluon elliptic Wigner fcn.! 23 July 2019

Back up

Generalized Parton Distributions

The nucleon (spin-1/2) has **four quark and gluon GPDs** (H, E and their polarized versions). Like usual PDFs, GPDs are non-perturbative functions **defined via the matrix elements of**

$$\begin{aligned} \mathbf{F}^{q} &= \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ix\bar{P}^{+}z^{-}} \langle p' | \bar{q}(-\frac{1}{2}z) \gamma^{+}q(\frac{1}{2}z) | p \rangle |_{z^{+}=0,\mathbf{z}=0} \\ &= \frac{1}{2\bar{P}^{+}} \left[\frac{H^{q}(x,\xi,t,\mu^{2}) \bar{u}(p') \gamma^{+}u(p) + E^{q}(x,\xi,t,\mu^{2}) \bar{u}(p') \frac{i\sigma^{+\alpha}\Delta_{\alpha}}{2m_{N}}u(p) \right] \end{aligned}$$

Contribution from ISR

the energy spectrum of the emitted ISR photon for two different EIC beam energy combinations.

the right plots show the same photon spectra but requiring $E_{\gamma} = 0.02 * E_{e}$

Photons with E_{γ} < 0.02 E_{e} do not result in a significant correction for the event kinematics.

Contribution from ISR

Fraction of ISR events for three Q²-bins as fct of x for two EIC beam energy combinations.

ONLY 15% of the events emit a photon with > 2% energy of the incoming electron

ISR photons with $E_{\gamma} < 0.02 E_e$ do not result in a significant correction for the event kinematics.

Rosenbluth separation

$$d\sigma = \mathrm{d}\sigma_{DVCS} + \mathrm{d}\sigma_{BH} + \mathrm{d}\sigma_{INT}$$

Rosenbluth separation of the electroproduction cross section into its parts

- The statistical uncertainties include all the selection criteria to suppress the BH
- exponential |t|-dependence assumed

Scattered Proton measurement

Remember:

 p_T of proton critical for physics $p_T = p' \sin(\Theta)$ $p'_L > 97\%$ of p_{Beam}

Note:

high energy colliders (HERA, Tevatron, LHC, RHIC) use Roman Pots to detect these protons

→ RPs are high resolution movable small tracking detectors (Si strips, Si pixels...), a crucial component

 $\rightarrow \Theta$ < 10 mrad

- → impact on large p_T -acceptance
- → small p_T acceptance limited by beam divergence and immittance
- → rule of thumb keep 10s between RP and beam 23 July 2019 S. Fazio (BNL)

Impact of proton acceptance

Impact of collected luminosity

See also B. Mueller's talk

0.18 < p_T < 1.3 GeV 10 fb⁻¹ → 1 fb⁻¹

Detector Requirements for Exclusive Reactions in ep/eA

Exclusivity criteria:

- Large rapidity coverage or tracker and Calorimeter (ballpark -4.5 <η<4.5)</p>
- Reconstruction of all particles in event
 - > wide coverage in t (= p_T^2) \rightarrow Roman pots

□ eA: large acceptance for neutrons from nucleus break-up

- Zero Degree Calorimeter
 - veto nucleus breakup
 - determine impact parameter of collision

