

Double Deeply Virtual Compton Scattering (DDVCS) at Electron-Ion Collider

Shengying ZHAO

25 Jul 2019

Institut de Physique Nucléaire Orsay, IN2P3/CNRS Université Paris-Sud & Paris-Saclay

Generalized Parton Distributions (GPDs)

elastic scattering $ep \rightarrow ep$

- R. Hofstadter, Nobel Prize 1961 Form Factors (FFs)
- \rightarrow transverse position space.

Friedman, Kendall, Taylor, Nobel Prize 1990 Parton Distribution Functions (PDFs)

 \rightarrow longitudinal momentum.

Dupré, Guidal, Niccolai, Vanderhaeghen 2017 \rightarrow nucleon tomography from the correlation between transverse position and longitudinal momentum

exclusive inelastic scattering

GPDs: H^q , E^q , \tilde{H}^q , $\tilde{E}^q(x, \xi, t)$ describe the non-perturbative quark (gluon) structure of the nucleon.

 $\begin{array}{l} & \mbox{Burkert, Elouadrhiri, Girod 2018} \\ \rightarrow \mbox{ internal pressure distribution} \end{array}$

Ji 1997 \rightarrow quark angular momentum $\int dxx \left[H^q(x,\xi,0) + E^q(x,\xi,0)\right]$

DVCS and DDVCS [1-4] are two golden processes for direct measurements of GPDs

Deeply Virtual Compton Scattering (DVCS)

$$\begin{aligned} \mathcal{H}(\xi,\,\xi,\,t) &= \sum_{q} e_{q}^{2} \left\{ \mathcal{P} \int_{-1}^{1} dx \, H^{q}(x,\,\xi,\,t) \left[\frac{1}{x-\xi} + \frac{1}{x+\xi} \right] \right. \\ &\left. - i\pi \left[H^{q}(\xi,\,\xi,\,t) - H^{q}(-\xi,\,\xi,\,t) \right] \right\} \end{aligned}$$

$$\begin{split} \mathcal{H}(\boldsymbol{\xi}',\boldsymbol{\xi},t) &= \sum_{q} e_{q}^{2} \Big\{ \mathcal{P} \int_{-1}^{1} dx \; H^{q}(x,\boldsymbol{\xi},t) \left[\frac{1}{x-\boldsymbol{\xi}'} + \frac{1}{x+\boldsymbol{\xi}'} \right] \\ &- i\pi \left[H^{q}(\boldsymbol{\xi}',\boldsymbol{\xi},t) - H^{q}(-\boldsymbol{\xi}',\boldsymbol{\xi},t) \right] \Big\} \end{split}$$

- DVCS can access GPDs only at $x = \pm \xi$;
- DDVCS allows one to measure the GPDs for each x, ξ, t values independently (|ξ'| < ξ).
- [1] M. Guidal and M. Vanderhaeghen, Phys. Rev. Lett. 90 012001 (2003).
- [2] A. V. Belitsky and D. Müller, Phys. Rev. Lett. 90 022001 (2003).
- [3] I. V. Anikin, et al., Acta Phys. Pol. B 49 741 (2018).
- [4] S. Zhao, arXiv:1904.09335.

DDVCS Observables I

 $ep \rightarrow ep\mu^{-}\mu^{+} \text{ (avoid antisymmetrization)}$ $\stackrel{e}{\longrightarrow} \mu^{+} \mu^{+}$

 $\sigma \propto \mathcal{T}^2 = |\mathcal{T}_{\mathsf{ddvcs}}|^2 + |\mathcal{T}_{\mathsf{BH}_1} + \mathcal{T}_{\mathsf{BH}_2}|^2 + \mathcal{I} \text{ (linear in Compton form factors)}$

polarized electron, unpolarized proton $\Delta \sigma_{\rm LU} \sim \Im \mathsf{m} \left\{ F_1 \mathcal{H} + \xi' (F_1 + F_2) \widetilde{\mathcal{H}} - \frac{t}{4M^2} F_2 \mathcal{E} \right\} \sin \phi$

electron and positron, unpolarized proton

$$\Delta \sigma_{\mathsf{C}} \sim \Re \mathbf{e} \left\{ F_1 \mathcal{H} + \xi' (F_1 + F_2) \widetilde{\mathcal{H}} - \frac{t}{4M^2} F_2 \mathcal{E} \right\} \cos \phi$$

Ongoing feasibility study of DDVCS at JLab12:

- events generation
- pseudo-data analysis
- CFF extraction

٦

EIC provides the opportunity for measuring the observables of polarized proton.

unpolarized electron, longitudinally polarized proton $\Delta \sigma_{\rm UL} \sim \Im \mathsf{m} \left\{ F_1 \widetilde{\mathcal{H}} + \xi' (F_1 + F_2) (\mathcal{H} + \frac{\xi}{1+\xi} \mathcal{E}) + \cdots \right\} \sin \phi$

unpolarized electron, transversely polarized proton $\Delta \sigma_{\rm UT} \sim \Im m \left\{ \xi^2 F_1(\mathcal{H} + \mathcal{E}) - \frac{t}{4M^2} (F_2 \mathcal{H} - F_1 \mathcal{E}) + \cdots \right\} \sin \phi$

VGG model [4] is the only one having DDVCS cross section calculation. In the following, all the projections are predicted with it.

^[4] I. V. M. Vanderhaeghen, P. A. M. Guichon and M. Guidal, Phys. Rev D, 60, 094017 (1999).

cross section at EIC I

5

cross section at EIC II

asymetries at EIC I

asymetries at EIC II

conclusion

- Based on this preliminary experimental projection of DDVCS at EIC, it is
 possible to obtain some DDVCS experiment observables with good precision.
- VGG model was designed mostly for the valence region, it may not give a satisfactory description in low x range.
- Muon detection capabilities are required for DDVCS.

outlook

- Continue and finish DDVCS phenomenological study at JLab12;
- DDVCS cross section calculation using appropriate GPDs model in low x range is needed for EIC.

Thank you!