Overview of Select Jet Physics Topics at an EIC

Brian Page Brookhaven National Laboratory EIC Users Meeting: Paris

Simulation Details / Particle Cuts

- Electron Proton events generated using PYTHIA6
 - 20x250 and 10x50
- Cut on inelasticity: $0.01 \le y \le 0.95$ ($0.2 \le y \le 0.8$ for angularity)
- Jet Algorithm: Anti_k_T (R = 1.0) (0.8, 0.4 for angularity)
- Jets found in Breit frame (lab frame for angularity)
- Particles used in jet finding:
 - Stable
 - p_T ≥ 250 MeV
 - η ≤ 4.5
 - Parent cannot originate from scattered electron

Jet Kinematics: Inclusive Jet p_T

Jet Pt: Q2=1-10

- Resolved, QCDC, PGF: 20x250
- LO DIS: 20x250
- Resolved, QCDC, PGF: 10x50
- LO DIS: 10x50
- Four Q2 ranges:
 - 10⁻⁵ 1 GeV²
 - 1 10 GeV²
 - 10 100 GeV²
 - 100 500 GeV²
- Jets from LO DIS in the Breit frame arise at large Q² when FSR imparts a large transverse kick

Jet Kinematics: Dijet Mass

- Resolved, QCDC, PGF: 20x250
- LO DIS: 20x250
- Resolved, QCDC, PGF: 10x50
- LO DIS: 10x50
- Four Q2 ranges:
 - 10⁻⁵ 1 GeV²
 - 1 10 GeV²
 - 10 100 GeV²
 - 100 500 GeV²
- Second jet in LO DIS comes from target remnant

80

100

120

40

60

Jet Kinematics: η vs x

- Jet pseudorapidity (lab frame) vs x for Vs = 45 and 141 GeV, four Q² ranges, and higher order subprocesses (resolved, QCD-Compton, and photon-gluon fusion
- For a given Q² range and x, jets sit at larger rapidities (driven by proton energy) at the larger center of mass energy

Jet Kinematics: η vs x

- Jet pseudorapidity (lab frame) vs x for Vs = 45 and 141 GeV, two Q² ranges, for the LO DIS subprocess
- Same trends with x, Q², and pseudorapidity as for the higher order processes
- See a tighter correlation between x and pseudorapidity because the outgoing parton momentum determined by event kinematics
- Width in distribution due to finite Q² range and final state radiation

Why Jets?

- Jets reproduce underlying partonic kinematics
 - Kinematics for inclusive process determined by scattered electron
 - For higher order processes, multiple partons involved and their kinematics are no longer determined only by electron
 - Jets can be surrogates for these partons and can be used to constrain quantities such as momentum fraction contributed to the hard interaction from the virtual photon

Jets have substructure

- Substructure observables quantify how energy is distributed within a jet
- Modification of substructure in eA collisions may be sensitive to various details of cold nuclear matter

Example: Photon Structure

- Virtual photon is a superposition of a bare photon and hadronic state
- Can access the hadronic component by tagging resolved events – what are the (polarized) photon PDFs?
- Can use dijet to accurately reconstruct photon momentum fraction which can isolate events of interest
- Can also use flavor tagging to enhance contribution from specific initial states

Example: Gluon Sivers Function

- Modulations of the angle between the proton spin vector and the sum of the di-parton system provide access to gluon sivers function
- Use of dijets has several advantages over di-hadrons including lower dilution of asymmetry and better separation between models of gluon sivers effect
- Jets don't suffer from uncertainties arising due to fragmentation (although hadronization still a concern)

Jet Substructure: Angularity

- Jet substructure observables track how energy is distributed within the jet – this section will focus on Angularity
- Substructure studies may be useful at an EIC for characterizing the properties of cold nuclear matter – look at modification of energy distribution between ep and eA
- Also pure theoretical interest in better understanding the factorization needed to describe the radiation patterns within the jet
- This work: characterize the behavior of jets and angularity observables at EIC energies
- Look at lab frame jets in the photoproduction region

$$\tau_a \equiv \frac{1}{p_T} \sum_{i \in J} p_T^i \left(\Delta R_{iJ} \right)^{2-a}$$

Angularity Overview

Angularity: R = 0.8; a = -2.0

- Log of the angularity spectrum with 'a' = -2.0 is shown above for resolved and direct jets with R = 0.8
- The jet profiles of the jets in the 4 colored regions are shown to the right
- Jet Profile is the fraction of p_T contained in a radius 'r' from the center of the jet
- For a given 'R' and 'a', jets with lower angularity are more collimated EIC Users ME

$$\tau_a \equiv \frac{1}{p_T} \sum_{i \in J} p_T^i \left(\Delta R_{iJ} \right)^{2-a}$$

- Angularity sums over each p_T of the particles in the jet weighted by the distance of the particle from the jet thrust axis
- The 'a' parameter controls how heavily the distance is weighted

Non-Perturbative Effects

 Non-perturbative effects are modeled using a single parameter shape function which is convoluted with the perturbative cross section

$$F_{\kappa}(k) = \frac{4k}{\Omega_{\kappa}^2} exp\left(-\frac{2k}{\Omega_{\kappa}}\right)$$

- Non-perturbative effects (MPI and pileup) are large at the LHC but the correction shifts the perturbative results to match the data
- At the EIC, non-perturbative effects are much smaller and a smaller correction is needed to improve the agreement between PYTHIA and theory

JHEP 1810 (2018) 137

With F. Ringer & K. Lee

Angularity: Theory Vs PYTHIA

- Comparison between angularity as found from PYTHIA (histograms), bare NLL theory (yellow band), and NLL + NP (red band) for different 'a' values and radii
- NP corrections:
 - 'R' = 0.8: Ω = 0.35
 - 'R' = 0.4: Ω = 0.2
- Expect larger 'R' values to have higher NP corrections (compare to LHC which had NP correction factor of 8). Agreement is better at larger 'a' values
 - Way to use a hard probe to quantify soft physics

Power Corrections

$$\tau_a \equiv \frac{1}{p_T} \sum_{i \in J} p_T^i \left(\Delta R_{iJ} \right)^{2-a}$$

$$\tau_a^{e^+e^-} = \frac{1}{2E_J} \sum_{i \in J} \left| p_T^{iJ} \right| \exp\left(-\left|\eta_{iJ}\right| (1-a)\right)$$

$$\tau_a = \left(\frac{2E_J}{p_T}\right)^{2-a} \tau_a^{e^+e^-} + \mathcal{O}(\tau_a^2)$$

- In addition to the definition given before, can define angularity in terms of particle p_T and eta with respect to the jet thrust axis – call this τ^e+e-
- The original angularity is equal to τ[^]e+e- times a prefactor plus power corrections
- Factorizations used in theoretical determination of angularity are valid up to these power corrections
- Can explore the behavior of these corrections by taking a ratio of τ^e+eto the original definition
- Significance of power corrections can be controlled by varying R, jet p_T, and 'a'

Power Corrections: Compare 'a'

R = 0.4

R = 0.8

Summary and Outlook

- Basic jet kinematics, such as p_T/mass and pseudorapidity distributions, were reviewed
- The utility of jets as parton surrogates was demonstrated via photon structure and gluon Sivers analyses
- A potentially new application for jets would be in exclusive diffractive dijet production which is sensitive to the gluon Wigner distribution at low x
- The angularity substructure observable was studied with Monte Carlo in the photoproduction region for kinematics relevant to an EIC
- Angularity values from Monte Carlo were compared with NLO+NLL predictions and were found to agree well, while small perturbative corrections were seen to improve agreement
- Such measurements may point to the viability of using hard jet probes to study 'soft' physics
- A method for systematically studying the role of power corrections by comparing different angularity definitions was also presented

Backup

Number of Particles

Average Number of Particles Vs Jet pT

Dijet Eta Vs Eta: Resolved, QCDC, PGF

19

Dijet Mass: Pt Vs Δη

Dijet |Delta Rapidity|: Q2 = 10^-5 - 1.0

Dijet 0.5*(Pt+Pt): Q2 = 10^-5 - 1.0

Underlying Event Characteristics

- Plot average number of charged particles per event as a function of azimuthal angle from trigger jet
- Also plot the average summed particle p_T
- See little dependence on trigger jet p_T
- The number of charged particles and p_T sum in transverse region is small