Development of a Polarized ³He⁺⁺ Ion Source for the EIC

Matthew Musgrave

G. Atoian, E. Beebe, S. Ikeda, S. Kondrashev, J. Maxwell, R. Milner,

M. Okamura, A. Poblaguev, D. Raparia, J. Ritter, S. Trabocchi, A. Zelenski

Massachusetts Institute of Technology

2019 EIC User Group Meeting July 23, 2019

Why a Polarized ³He Ion Source?

- Polarized DIS crucial for study of neutron spin structure
 - PPDFs; tests of QCD, Bjorken sum rule; higher energies

n	р	р	
•			

State	Probability	
S	88.6%	
S'	1.5%	
D	8.4%	

- S-state ³He: nuclear spin carried by the neutron
- ³He's magnetic moment close to n, compatible with RHIC spin manipulation
- Polarized ³He ions offer a "polarized neutron beam" for RHIC and a future EIC

Source Concept

Identified as high priority R&D for EIC by EICAC review in 2009, Office of Nuclear Physics Community Review in 2017, and the 2018 assessment of the US National Academy of Sciences.

<u>Requirements</u>

- Polarized ³He using optical pumping and injection into EBIS at 5 T
- Maximum polarization >70%
- Intensity 2.5 × 10^{11 3}He++ ions in 20 μ s pulse (~4 mA peak current)
- Spin-flip in the beam transport line

RHIC EBIS

- Radial trapping of ions by the space charge of the electron beam
- Axial trapping by applied electrostatic potentials at ends of trap $C = \frac{l}{e} \times l \times \sqrt{\frac{m_e}{2E}}$ Ion output per pulse is proportional to the trap length and electron current

- 5T solenoid B Field; 1.5 m ion trap
- 20 keV electrons up to 10 A
- 5 Hz maximum repetition rate

EICUG, July 23, 2019

Matthew Musgrave

Extended EBIS Upgrade

- Add a second 5 T superconducting solenoid for trap length extension: 40% increase in Au intensity
- Install ³He polarization and injection system into the upstream solenoid
- Opportunity for various vacuum and other minor improvements

Extended EBIS Superconducting Solenoids

- 5.0 Tesla field, about 1.0 Tesla at field minimum in solenoid separation (~30 cm)
- Electron beam successfully propagated through both solenoids in May 2019.

Polarized ³He Ion Source

Metastability Exchange Optical Pumping

RF Discharge at Multi-Tesla Fields

- RF discharge parameters strongly affect maximum polarization.
- RF discharge power needs to be reduced as ³He polarization increases.
- Optimization of the ³He cell geometry and placement of RF electrodes should improve polarization.

Open ³He Cell and Gas Purification System

OPPIS (RHIC's polarized proton source) was converted into a high field MEOP system for polarizing ³He.

Non-magnetic brass pneumatic remotely controlled Isolation Valve

Open ³He Cell and Gas Purification System

³He cyro-purification and storage system was built from a modified cryo-pump. Pumps everything except helium!

Optical Probe Polarimetry

- High or low field, no calibration required
 - Sweep low power probe laser through two 2^3S-2^3P transitions to directly probe states^{7,8}

⁷Courtade *et al*, Eur. Phys. J. D 21 (2002). ⁸Suchanek *et al*, Eur. Phys. Special Topics 144 (2007).

Matthew Musgrave

Optical Probe Polarimetry

- High or low field, no calibration required
 - Sweep low power probe laser through two 2^3S-2^3P transitions to directly probe states^{7,8}

⁷Courtade *et al*, Eur. Phys. J. D 21 (2002). ⁸Suchanek *et al*, Eur. Phys. Special Topics 144 (2007).

Matthew Musgrave

³He Open Cell Results

- ³He pressure can be controlled with the cryopump temperature.
- Polarizations have been measured >80% at 2 torr and higher pressures have similar results.
- Relaxation time of 30 s measured in open cell.
 Relaxation rate is limited by metal surfaces of the fill valve and gas contamination.
- Valve construction and open cell design will be optimized to improve relaxation rate and maximum polarization.

High Speed Pulsed ³He Valve

- Pulsed current causes valve to open by Lorentz Force to the conducting plate in high magnetic field.
- Valve design has successful long-term operation in OPPIS: B=3 T, I=100 A, L=5 cm, F=15 N, τ=100μs.

 $d\vec{F}_A = Id\vec{l} \times \vec{B}$

High Speed Pulsed ³He Valve

- Test of high speed pulsed valve in a 2.5 T field in the OPPIS solenoid.
- B = 2.5 T, I = 12 A, ³He reservoir pressure = 2 Torr

*Actual valve open time may be longer than the electric current pulse width.

Gas Ionization Cell for Electron Beam Tests in the BNL TestEBIS

- 46 cm long, 1 cm diameter gas ionization cell
- 3 cm long, 0.5 cm diameter down stream barrier (blue)
- Electron beams of 6 Amps were successfully propagated through the assembly.

Vacuum Simulations of EBIS with MolFlow

Timing & Trap Capacity	Electron Beam	Pressure
Maximum EBIS pulse time = 200 ms	1 mm diameter	1x10 ⁻⁶ mbar during gas injection
Charge Capacity = $\sim 10^{12}$ elementary charges	10 Amp	1x10 ⁻¹⁰ mbar standard operatior
³ He++ Capacity = ~ 2.5x10 ^{11 3} He++	25 keV	

Vacuum Simulations of EBIS with MolFlow

Timing & Trap Capacity	Electron Beam	Pressure
Maximum EBIS pulse time = 200 ms	1 mm diameter	1x10 ⁻⁶ mbar during gas injection
Charge Capacity = $\sim 10^{12}$ elementary charges	10 Amp	1x10 ⁻¹⁰ mbar standard operatior
³ He++ Capacity = ~ 2.5x10 ^{11 3} He++	25 keV	

Electron Beam Ionization of ³He

$$S = \frac{16I\sigma}{3\pi^2 er_e v_{gas}}$$

- For an e-beam of 25 keV there is a ≈0.5% probability that ³He is ionized during traverse of the e-beam.
- Therefore, treat the e-beam as an ideal pump with 99.5% transparency.

Electron Beam Ionization of ³He

Proportion of ³He ionized after 20 ms

Length:	$10 \mathrm{~cm}$	$20 \mathrm{~cm}$	$30 \mathrm{~cm}$	$50 \mathrm{~cm}$
1 cm (0.5 cm ends)	0.142	0.263	0.372	0.537
1 cm (1 cm ends)	0.0556	0.132	0.224	0.411
2 cm (0.5 cm ends)	0.123	0.184	0.218	0.257
2 cm (1 cm ends)	0.0382	0.0695	0.0997	0.155
2 cm (2 cm ends)	0.0176	0.0355	0.0557	0.101
3 cm (0.5 cm ends)	0.097	0.121	0.131	0.141
3 cm (1 cm ends)	0.0349	0.0576	0.0747	0.0988
3 cm (2 cm ends)	0.0158	0.0278	0.039	0.06

$$S = \frac{16I\sigma}{3\pi^2 er_e v_{gas}}$$

- For an e-beam of 25 keV there is a ≈0.5% probability that ³He is ionized during traverse of the e-beam.
- Therefore, treat the e-beam as an ideal pump with 99.5% transparency.

Gas Diffusion and Pumping in Ionization Cell

➢ 6.18 x 10^{11 3}He atoms injected

➢ 10 A, 25 keV e-beam

Ionization Cell

• 30 cm long

- 2 cm diameter
- 1 cm constrictions

Electron Beam Ionization of ³He

Step sequence	Time	
³ He gas injection	0.5 ms	
Diffusion into ionization cell	2 ms	
Injected gas pressure falls 50%	3 ms	
Ionization of ³ He to ³ He ⁺	${\sim}10$ ms per gas injection	
Time constant for ${}^{3}\text{He}^{+} \rightarrow {}^{3}\text{He}^{++}$ conversion	1 ms	
Pump down to 10 ⁻⁹ torr	100 -1 50 ms	
5 Hz EBIS pulse repetition rate	200 ms	
Switching time between species	1 second	

Feasibility Experiment

- Use extended EBIS and extract fully stripped polarized ³He⁺⁺ ions accelerated to 6 MeV
- Measure ³He + ⁴He → ³He + ⁴He elastic scattering
- Analyzing power has been measured to be 100% somewhere between 79°_{CM} & 91°_{CM} at ~5.4 MeV
- Process yields 2.66 MeV ³He at 53.6°_{lab} and 2.64 MeV recoil ⁴He at 44.5°_{lab}

³He⁺⁺ Spin Rotator and 6 MeV Polarimeter

- 1st dipole magnet rotates ³He spin into the horizontal transverse plane.
- Spin-flip solenoid selectively rotates ³He spin into the vertical transverse plane (spin-up or spin-down).
- 2nd, 3rd, & 4th dipole magnets direct the ³He beam into either the 6 MeV polarimeter or back into the transport line to RHIC.

6 MeV ³He⁺⁺ Polarimeter Design

- Measure 2.66 MeV ³He at 53.6°_{lab} and 2.64 MeV recoil ⁴He at 44.5°_{lab} after ³He + ⁴He → ³He + ⁴He elastic scattering.
- Asymmetry of detector signals for opposite spin states will yield ³He polarization.

³He polarimeter test setup to measure null signal asymmetry.

Summary

- Extended EBIS upgrade is ongoing and electrons were propagated through two 5 T solenoids.
- ³He was successfully polarized to >80% in a 3 T field.
- An optical probe polarimeter to measure ³He polarization was developed.
- A prototype high-speed pulsed valve has been tested.
- Gas injection & ionization simulations show promising results.
- The ³He spin-rotator is being designed and equipment purchased.
- The 6 MeV ³He polarimeter has been designed and the concept was tested with an alpha source.

Now all the parts need to be put together. We plan for partial installation in the summer of 2020 and complete installation followed by polarization measurements in the summer of 2021.

Thank you for your attention

<u>MIT-BNL Polarized ³He Ion Source Collaboration</u> G. Atoian, E. Beebe, S. Ikeda, S. Kondrashev, J. Maxwell, R. Milner, M. Musgrave, M. Okamura, A. Poblaguev, D. Raparia, J. Ritter, S. Trabocchi, A. Zelenski

This work was supported by DOE Office of Nuclear Physics, R&D for Next Generation Nuclear Physics Accelerator Facilities.