Measuring Weizsäcker-Williams distribution of linearly polarized gluons at EIC
through dijet azimuthal asymmetries

Vladimir Skokov (NC State University)
A. Dumitru, V. S., T. Ullrich, Phys.Rev. C99 (2019), 015204, arXiv:1809.02615

NC STATE UNIVERSITY

Dijet production in DIS at small x

DIS dijet production: $\gamma^{*} A \rightarrow q \bar{q} X$

- Multiple scatterings of (anti) quark are accounted for by ressumation:

$$
U(\mathbf{x})=\mathbb{P} \exp \left\{i g \int d x^{-} A^{+}\left(x^{-}, \mathbf{x}_{\perp}\right)\right\}
$$

- In color dipole model this process corresponds to

$$
\begin{aligned}
& \frac{d \sigma^{\gamma^{*} A \rightarrow q \bar{q} X}}{d^{3} k_{1} d^{3} k_{2}} \propto \\
& N_{c} \alpha_{e m} e_{q}^{2} \int \frac{d^{2} x_{1}}{(2 \pi)^{2}} \cdots \exp \left(-i \mathbf{k}_{1}\left(\mathbf{x}_{1}-\mathbf{y}_{1}\right)-i \mathbf{k}_{2}\left(\mathbf{x}_{2}-\mathbf{y}_{2}\right)\right) \\
& \sum_{\gamma \alpha \beta} \psi_{\alpha \beta}^{\mathrm{T}, \mathrm{~L} \gamma}\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right) \psi_{\alpha \beta}^{\mathrm{T}, \mathrm{~L} \gamma *}\left(\mathbf{y}_{1}-\mathbf{y}_{2}\right)\left[1+\frac{1}{N_{c}}\left(\left\langle\operatorname{Tr} U\left(\mathbf{x}_{1}\right) U^{\dagger}\left(\mathbf{y}_{1}\right) U\left(\mathbf{y}_{2}\right) U^{\dagger}\left(\mathbf{x}_{2}\right)\right\rangle\right.\right. \\
& \left.\left.-\left\langle\operatorname{Tr} U\left(\mathbf{x}_{1}\right) U^{\dagger}\left(\mathbf{x}_{2}\right)\right\rangle-\left\langle\operatorname{Tr} U\left(\mathbf{y}_{1}\right) U^{\dagger}\left(\mathbf{y}_{2}\right)\right\rangle\right)\right] \quad \uparrow \text { Quadrupole contribution }
\end{aligned}
$$

- Splitting wave function of γ^{\star} with longitudinal momentum p^{+}and virtuality Q^{2}

Dijet production in DIS

- Back-to-back jets ("correlation" limit):

Total momentum $\mathbf{P}=\left(\mathbf{k}_{1}-\mathbf{k}_{2}\right) / 2 \gg$ momentum imbalance $\mathbf{q}=\mathbf{k}_{1}+\mathbf{k}_{2}$;

- Expansion about $\mathbf{x}_{1} \approx \mathbf{x}_{2}$ and $\mathbf{y}_{1} \approx \mathbf{y}_{2}$ results in gradients of Wilson lines
- Allows to reduce quadrupole to 2-point functions

$$
x G_{W W}^{i j}(\mathbf{q})=\frac{8 \pi}{S_{\perp}} \int \frac{d^{2} x}{(2 \pi)^{2}} \frac{d^{2} y}{(2 \pi)^{2}} e^{-\mathbf{q} \cdot(\mathbf{x}-\mathbf{y})}\left\langle A_{a}^{i}(\mathbf{x}) A_{a}^{j}(\mathbf{y})\right\rangle, \quad A^{i}(\mathrm{x})=\frac{1}{i g} U^{\dagger}(\mathrm{x}) \partial_{i} U(\mathrm{x})
$$

Weizsacker-Williams Color Electric field \uparrow

- Decomposition to conventional (unpolarized) and traceless (linearly polarized) contributions

$$
x G_{W W}^{i j}(\mathbf{q})=\frac{1}{2} \delta^{i j} x G^{(1)}(\mathbf{q})-\frac{1}{2}\left(\delta^{i j}-2 \frac{q^{i} q^{j}}{q^{2}}\right) x h^{(1)}(\mathbf{q})
$$

Correlations limit results for $\gamma_{\|, \perp}^{*}$

$$
\left.E_{1} E_{2} \frac{d \sigma_{\gamma_{L}^{*} A \rightarrow q \bar{q} X}^{d^{3} k_{1} d^{3} k_{2} d^{2} b}=\alpha_{e m} e_{q}^{2} \alpha_{s} \delta\left(x_{\gamma^{*}}-1\right) z^{2}(1-z)^{2} \frac{8 \epsilon_{f}^{2} P_{\perp}^{2}}{\left(P_{\perp}^{2}+\epsilon_{f}^{2}\right)^{4}} \times\left[\frac{x G^{(1)}\left(x, q_{\perp}\right)}{\underline{\text { func of } q_{\perp}}}+\underline{\cos (2 \phi)} x h_{\perp}^{(1)}\left(x, q_{\perp}\right)\right]}{}\right]
$$

z is long. momentum fraction of photon carried by quark

$$
\epsilon_{f}^{2}=z(1-z) Q^{2}
$$

- Azimuthal anisotropy is in angle between \mathbf{P} and q , denoted by ϕ
- Is $h_{\perp}^{(1)}$ important at small x?

MV model results

- Analytical result in Gaussian approximation for $G^{(1)}$ and $h_{\perp}^{(1)}$
- In particular, using McLerran-Venugopalan model

$$
\begin{aligned}
x h^{(1)}\left(x, q^{2}\right)= & \frac{N_{c} S_{\perp}}{2 \pi^{3} \alpha_{s}} \int d|r||r| J_{2}(|r||q|)\left[1-\exp \left(-\frac{Q_{s}^{2} r^{2}}{4} \log \frac{1}{r^{2} \Lambda_{\mathrm{IR}}^{2}}\right)\right] \frac{1}{r^{2} \log \frac{1}{r^{2} \Lambda_{\mathrm{IR}}^{2}}} \\
x G^{(1)}\left(x, q^{2}\right)= & \frac{N_{c} S_{\perp}}{2 \pi^{3} \alpha_{s}} \int d|r||r| J_{0}(|r||q|)\left[1-\exp \left(-\frac{Q_{s}^{2} r^{2}}{4} \log \frac{1}{r^{2} \Lambda_{\mathrm{IR}}^{2}}\right)\right] \frac{1}{r^{2}} \\
& \text { F. Dominguez, J.-W. Qiu, B.-W. Xiao, F. Yuan Phys.Rev. D85 (2012) 0515030 J. Zhou Phys.Rev. D84 (2011) } 0515003
\end{aligned}
$$

- Limiting cases:
$\Lambda_{I R} \ll q \ll Q_{s}, \quad x h^{(1)} \propto q^{0}$ and $x G^{(1)} \propto \ln \frac{Q_{s}^{2}}{q^{2}} \leadsto$ suppression of polarization $\frac{x h^{(1)}}{x G^{(1)}}$ $q \gg Q_{s}, \quad x h^{(1)} \approx x G^{(1)} \propto 1 / q^{2} \leadsto$ maximal polarization

Numerics: small x evolution

- McLerran-Venugopalan initial conditions at $Y=\ln x_{0} / x=0$
- Quantum evolution towards $x<x_{0}$ by solving JIMWLK
using Langevin method

Small x evolution

- Fast departure from MV $\left(\alpha_{s} Y=0\right)$
- Slow evolution towards smaller x
- Emission of small x gluons reduces degree of polarization.
q_{\perp} is scaled by exponentially growing $Q_{s}(Y)$: ratio at fixed q_{\perp} decreases with rapidity.
- Approximate scaling at small x
A. Dumitru, T. Lappi छ V. S. Phys.Rev.Lett. 115 (2015) 25, 252301

Second harmonics of azimuthal anisotropy: q_{\perp}-dependence

- Azimuthal anisotropy

$$
v_{2}\left(P_{\perp}, q_{\perp}\right)=\langle\cos 2 \phi\rangle
$$

- Fixed coupling results ("f.c."): $\alpha_{s}=0.15$
- At a fixed P_{\perp} no significant dependence on prescription for α_{s}

A. Dumitru, T. Lappi \& V. S. Phys.Rev.Lett. 115 (2015) 25, 252301

Can it be measured at an EIC?

- Signal on partonic level; does it survive after jet reconstruction?
- Kinematic range at a future EIC is limited
- How significant signal compared to background?

MCDijet: Monte-Carlo generator

To answer these questions: MCDijet
A. Dumitru, V. S., T. Ullrich, Phys.Rev. C99 (2019), 015204, arXiv:1809.02615

- Input: collision energy \sqrt{s} and atomic number A
- Q_{s} and target area are adjusted according to A
- Output: partons' 4-momentum etc
- Pythia afterburner: partons \rightarrow particles
- Jet reconstruction
- $\sqrt{s}=90 \mathrm{GeV}$ only;
$\sqrt{s}=40 \mathrm{GeV}$ does not provide sufficient kinemaic range to extract signal

Reconstructed jets vs partons

- Partons from MCDijet \rightarrow parton shower algorithm from Pythia $8.2 \rightarrow$ jets
- kt-algorithm from FastJet package with cone radius $R=1$

Reconstructed jets vs partons

- Momentum imbalance q_{\perp} is well reproduced (important to extract distr. funct.)
- Significant distortion for total momentum of dijet P_{\perp}

Reconstructed jets vs partons

- $\pi / 2$ phase shift between transversal and longitudinal photon polarizations
- Reconstructed jets well reproduce original anisotropy
- Loss of dijet yield $\approx 25 \%$ due to low- p_{\perp} particles

Background

- MCDijet does not generate complete event
- PYTHIA6 to study underlying activity
- Count $f_{i}+\gamma^{*} \rightarrow f_{i}+g$ and $g+\gamma^{*} \rightarrow f_{i}+\bar{f}_{i}$ as signal; rest as background
- $1<\eta<2.5$ to minimize background from beam remnants

Acceptance: PYTHIA

- PYTHIA generates negative v_{2} due to limited η acceptance

- The origin is due to trivial kinematics. Large values of $z \rightarrow 1$ are biased toward $\phi \approx \pi$

Small values of $z \rightarrow 0$ are biased toward $\phi \approx 0$
\checkmark Finite rapidity acceptance generate a positive and finite v_{2}

- Measurements at an EIC will need to be corrected for this finite acceptance effect
- We subtract this modulation in our analysis

Extracted signal

- Lines: Combined fit based on LO dijet production cross section
- Proper measurement will require integrated luminosities $>20 \mathrm{fb}^{-1} / \mathrm{A}$

Outlook

\checkmark Ratio q_{\perp} / P_{\perp} is not very small; thus corrections to correlation limit can be important

- Corrections come in two forms: contributing to higher order harmonics $\cos 4 \phi$; they are suppressed by $q_{\perp}^{2} / P_{\perp}^{2}$ contributing to isotropic and $\cos 2 \phi$; they are suppressed by $Q_{s}^{2} / P_{\perp}^{2} \log P_{\perp} / \Lambda$
- Estimates show that these corrections may modify signal by 25%
A. Dumitry \& V. Skokov, arXiv:1605.02739

Conclusions

5-10\% azimuthal anisotropy can be expected for EIC kinematics

- Reconstructed dijets reflect original partonic anisotropy remarkably well
- Unavoidable finite acceptance range leads to kinematic bias and non-zero "background" azimuthal anisotropy
It was subtracted in our analysis
Measurements will need to be corrected for this acceptance effect
- Based on estimate of background from Pythia: to extract anisotropy, and thus $x h_{1}^{(g)} / x G_{1}^{(g)}$ would require integrated luminosity $20 \mathrm{fb}^{-1} / A$

Kinematic range for EIC

- Substantial effect can only be observed at largest energy.
- Magnitude of P_{\perp} must be sufficiently large to allow jet reconstruction.
- To probe $h^{(1)}$ wide range of q_{\perp} and P_{\perp} is required.

Acceptance

- This is all valid for a wide acceptance range in rapidity

There is momentous correlations of the angle with η

Introduction

At small x, there are two different unintegrated gluon distributions (UGD):

- Dipole gluon distribution $\left(G^{(2)}\right)+$ linearly polarized partner $\left(h^{(2)}\right)$.

Appears in many processes. Small x evolution is well understood.
Maximal polarization $x h^{(2)}=x G^{(2)}$

- Weizsäcker-Williams (WW) gluon distribution $\left(G^{(1)}\right)+$ linearly polarized partner $\left(h^{(1)}\right)$.

Degree of polarization is x - and transverse momentum dependent

	DIS	DY	SIDIS	$p A \rightarrow \gamma$ jet X	$\begin{aligned} & e p \rightarrow e^{\prime} Q \bar{Q} X \\ & e p \rightarrow e^{\prime} j_{1} j_{2} X \end{aligned}$	$\begin{gathered} p p \rightarrow \eta_{c, b} X \\ p p \rightarrow H X \end{gathered}$	$\begin{aligned} & p p \rightarrow J / \psi \gamma X \\ & p p \rightarrow \Upsilon \gamma X \end{aligned}$	$p A \rightarrow j_{1} j_{2} X$
$G^{(1)}$ (WW)	\times	\times	\times	\times	\checkmark	$\sqrt{ }$	\checkmark	\checkmark
$G^{(2)}(\mathrm{DP})$	\checkmark	\checkmark	\checkmark	\checkmark	\times	\times	\times	\checkmark

	$p p \rightarrow \gamma \gamma X$	$p A \rightarrow \gamma^{*}$ jet X	$e p \rightarrow e^{\prime} Q \bar{Q} X$ $e p \rightarrow e^{\prime} j_{1} j_{2} X$	$p p \rightarrow \eta_{c, b} X$ $p p \rightarrow H X$	$p p \rightarrow J / \psi \gamma X$ $p p \rightarrow \Upsilon \gamma X$
$h^{(1)}(\mathrm{WW})$	\checkmark	\times	\checkmark	$\sqrt{ }$	\checkmark
$h^{(2)}(\mathrm{DP})$	\times	\checkmark	\times	\times	\times

First correction to correlation limit at small x I

- General small x expression for dijet cross section

$$
\begin{aligned}
& \frac{d \sigma^{\gamma^{*} A \rightarrow q \bar{q} X}}{d^{3} k_{1} d^{3} k_{2}}= \\
& N_{c} \alpha_{e m} e_{q}^{2} \delta\left(p^{+}-k_{1}^{+}-k_{2}^{+}\right) \int \frac{d^{2} x_{1}}{(2 \pi)^{2}} \frac{d^{2} x_{2}}{(2 \pi)^{2}} \frac{d^{2} y_{1}}{(2 \pi)^{2}} \frac{d^{2} y_{2}}{(2 \pi)^{2}} \exp \left(-i \mathbf{k}_{1}\left(\mathbf{x}_{1}-\mathbf{y}_{1}\right)-i \mathbf{k}_{2}\left(\mathbf{x}_{2}-\mathbf{y}_{2}\right)\right) \\
& \sum_{\gamma \alpha \beta} \psi_{\alpha \beta}^{\mathrm{T}, \mathrm{~L} \gamma}\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right) \psi_{\alpha \beta}^{\mathrm{T}, \mathrm{~L} \gamma *}\left(\mathbf{y}_{1}-\mathbf{y}_{2}\right)\left[1+\frac{1}{N_{c}}\left(\left\langle\operatorname{Tr} U\left(\mathbf{x}_{1}\right) U^{\dagger}\left(\mathbf{y}_{1}\right) U\left(\mathbf{y}_{2}\right) U^{\dagger}\left(\mathbf{x}_{2}\right)\right\rangle\right.\right. \\
& \left.\left.-\left\langle\operatorname{Tr} U\left(\mathbf{x}_{1}\right) U^{\dagger}\left(\mathbf{x}_{2}\right)\right\rangle-\left\langle\operatorname{Tr} U\left(\mathbf{y}_{1}\right) U^{\dagger}\left(\mathbf{y}_{2}\right)\right\rangle\right)\right] \quad \uparrow \text { Quadrupole contribution }
\end{aligned}
$$

- For arbitrary \mathbf{k}_{1} and \mathbf{k}_{2}, one expects presence of non-trivial $\langle\cos 2 n \phi\rangle, n \in Z$
- First correction to correlation limit (suppressed by $1 / P^{2}$) includes terms $\propto(\mathbf{q} \cdot \mathbf{P})^{4}$ and thus results in $\langle\cos 4 \phi\rangle \neq 0$

First correction to correlation limit at small x II

- Derivation is tedious but straight forward (see details in 1605.02739)
- Expectation of Wilson lines

$$
\mathcal{Q}\left(\mathbf{x}_{1}, \mathbf{x}_{2} ; \mathbf{x}_{2}^{\prime}, \mathbf{x}_{1}^{\prime}\right)=1+\frac{\left\langle\operatorname{Tr} U\left(\mathbf{x}_{1}\right) U^{\dagger}\left(\mathbf{x}_{1}^{\prime}\right) U\left(\mathbf{x}_{2}^{\prime}\right) U^{\dagger}\left(\mathbf{x}_{2}\right)\right\rangle-\left\langle\operatorname{Tr} U\left(\mathbf{x}_{1}\right) U^{\dagger}\left(\mathbf{x}_{2}\right)\right\rangle-\left\langle\operatorname{Tr} U\left(\mathbf{x}_{1}^{\prime}\right) U^{\dagger}\left(\mathbf{x}_{2}^{\prime}\right)\right\rangle}{N_{c}}
$$

is expanded in series wrt $\mathbf{u}=\mathbf{x}_{1}-\mathbf{x}_{2}$ and $u^{\prime}=\mathbf{x}_{1}^{\prime}-\mathbf{x}_{2}^{\prime}$:

$$
\mathcal{Q}=u_{i} u_{j}^{\prime} \mathcal{G}^{i, j}\left(v, v^{\prime}\right)+u_{i} u_{j}^{\prime} u_{k}^{\prime} u_{l}^{\prime} \mathcal{G}^{i, j k l}\left(v, v^{\prime}\right)+u_{i} u_{j} u_{k} u_{l}^{\prime} \mathcal{G}^{i j k, l}\left(v, v^{\prime}\right)+u_{i} u_{j} u_{k}^{\prime} u_{l}^{\prime} \mathcal{G}^{i j, k l}\left(v, v^{\prime}\right)+\cdots
$$

- Following combination is relevant (momentum space)

$$
\mathcal{G}^{i j m n}\left(x, q^{2}\right)=\mathcal{G}^{i, j m n}\left(x, q^{2}\right)+\mathcal{G}^{i j m, n}\left(x, q^{2}\right)-\frac{2}{3} \mathcal{G}^{i j, m n}\left(x, q^{2}\right)
$$

- $\mathcal{G}^{i j m n}\left(x, q^{2}\right)$ results in corrections to isotropic and $\langle\cos 2 \phi\rangle$, as well as non-trivial $\langle\cos 4 \phi\rangle$. I will focus on $\langle\cos 4 \phi\rangle$.

First correction to correlation limit at small x III

- The amplitude of $\cos 4 \phi$ is determined by

$$
\Phi_{2}\left(x, q^{2}\right)=-\frac{2 N_{c}}{\alpha_{s}} \mathfrak{B}_{3}^{i j m n} \mathcal{G}^{i j m n}\left(x, q^{2}\right) .
$$

where $\mathfrak{P}_{3}^{i j m n}$ is projector extracting $\propto \cos 4 \phi$

$$
\mathfrak{F}_{3}^{i j m n}=-\frac{1}{6 \sqrt{2}}\left(\delta_{i j} \delta_{m n}+\delta_{i m} \delta_{j n}+\delta_{j m} \delta_{i n}-2\left(\Pi_{i j} \Pi_{m n}+\Pi_{i m} \Pi_{j n}+\Pi_{j m} \Pi_{i n}\right)\right) ; \quad \Pi_{i j}=\delta_{i j}-\frac{2 q_{i} q_{j}}{q^{2}}
$$

- For MV model

$$
\begin{aligned}
\Phi_{2}\left(q^{2}\right)= & \frac{N_{c}}{\sqrt{2} 3 \pi \alpha_{s}} \frac{S_{\perp}}{(2 \pi)^{2}} \int \frac{d|r|}{|r|^{3}} J_{4}(|r||q|)\left[\frac{2}{\ln \frac{1}{r^{2} \Lambda_{\mathrm{IR}}^{2}}}\left\{1-\exp \left(-\frac{Q_{s}^{2} r^{2}}{4} \log \frac{1}{r^{2} \Lambda_{\mathrm{IR}}^{2}}\right)\right\}\right. \\
& \left.+\frac{5}{\ln ^{2} \frac{1}{r^{2} \Lambda_{\mathrm{IR}}^{2}}}\left\{1-\exp \left(-\frac{Q_{s}^{2} r^{2}}{4} \log \frac{1}{r^{2} \Lambda_{\mathrm{IR}}^{2}}\right)\left[1+\frac{Q_{s}^{2} r^{2}}{4} \log \frac{1}{r^{2} \Lambda_{\mathrm{IR}}^{2}}\right]\right\}\right]
\end{aligned}
$$

- $\Phi_{2}\left(q^{2}\right)$ is positive-definite function
- Limiting cases: $\Lambda_{\mathrm{IR}} \ll q \ll Q_{s} \quad \Phi_{2}\left(q^{2}\right) \sim\left(N_{c} / \alpha_{s} \log Q_{s}^{2} / \Lambda_{\mathrm{IR}}^{2}\right) S_{\perp} q^{2} ; q \gg Q_{s}, \quad \Phi_{2}\left(q^{2}\right) \rightarrow\left(N_{c} / \sqrt{2} 24 \pi \alpha_{s}\right)\left(S_{\perp} / 4 \pi^{2}\right) Q_{s}^{2}$

MV results

These functions determine amplitudes of $\cos 2 n \phi$ contributions to dijet angular distributions for $n=0,1,2$, respectively.

[^0]
Dijet cross section

Dijet cross section to this order

$$
\begin{aligned}
& \frac{d \sigma_{T}^{\gamma_{T}^{*} A \rightarrow q \bar{q} X}}{d^{2} k_{1} d z_{1} d^{2} k_{2} d z_{2}} \\
& \quad=\alpha_{s} \alpha_{e m} e_{q}^{2}\left(z_{1}^{2}+z_{2}^{2}\right)\left[\frac{P^{4}+\epsilon_{f}^{4}}{\left(P^{2}+\epsilon_{f}^{2}\right)^{4}}\left(x G^{(1)}\left(x, q^{2}\right)-\frac{2 \epsilon_{f}^{2} P^{2}}{P^{4}+\epsilon_{f}^{4}} x h^{(1)}\left(x, q^{2}\right) \cos 2 \phi+\mathcal{O}\left(\frac{1}{P^{2}}\right)\right)\right. \\
& \\
& \left.-\frac{48 \epsilon_{f}^{2} P^{4}}{\sqrt{2}\left(P^{2}+\epsilon_{f}^{2}\right)^{6}} \Phi_{2}\left(x, q^{2}\right) \cos 4 \phi\right]
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d \sigma^{\gamma_{L}^{*} A \rightarrow q \bar{q} X}}{d^{2} k_{1} d z_{1} d^{2} k_{2} d z_{2}} \\
& \quad=8 \alpha_{s} \alpha_{e m} e_{q}^{2} z_{1} z_{2} \epsilon_{f}^{2}\left[\frac{P^{2}}{\left(P^{2}+\epsilon_{f}^{2}\right)^{4}}\left(x G^{(1)}\left(x, q^{2}\right)+x h^{(1)}\left(x, q^{2}\right) \cos 2 \phi+\mathcal{O}\left(\frac{1}{P^{2}}\right)\right)\right.
\end{aligned}
$$

$$
\left.+\frac{48 P^{4}}{\sqrt{2}\left(P^{2}+\epsilon_{f}^{2}\right)^{6}} \Phi_{2}\left(x, q^{2}\right) \cos 4 \phi\right]
$$

MV results

$\langle\cos 2 \phi\rangle$ and $\langle\cos 4 \phi\rangle$ in $\gamma_{L}^{*}+A \rightarrow q+\bar{q}$ dijet production from MV model:

$$
z=1 / 2, P=4.5 Q_{s}
$$

$\langle\cos 4 \phi\rangle$ can be safely neglected in first approximation

Monte-Carlo Event generator

- McDijet: Dijet in DIS event generator https://github.com/vskokov/McDijet
- Input: collision energy \sqrt{s} and atomic number A
- Q_{s} and target area are adjusted according to A
- Output: partons' 4-momentum etc
- Pythia afterburner: partons \rightarrow particles
- Jet reconstruction

Goal is to study feasibility of extracting signal and its dependence on atomic number, A, and collision energy, \sqrt{s}

[^0]: A. Dumitru and V. S., arXiv:1605.02739

