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Dijet production in DIS at small x

¢ DIS dijet production: v* A — ¢qq X

¢ Multiple scatterings of (anti) quark are accounted for by
ressumation:

U(x) =Pexp {ig/dx_fﬁ(a:_,xl)}
¢ In color dipole model this process corresponds to
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¢ Splitting wave function of 4* with longitudinal momentum p* and virtuality Q>
g Y g



Dijet production in DIS

¢ Back-to-back jets (“correlation” limit):
Total momentum P = (k; — ko)/2 > momentum imbalance q = k; + ko;

¢ Expansion about x; &~ xo and y; & ys results in gradients of Wilson lines

¢ Allows to reduce quadrupole to 2-point functions
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Weizsacker-Williams Color Electric field 1

¢ Decomposition to conventional (unpolarized) and traceless (linearly polarized) contributions

2Giyy (q) = %5% ¢M(q) - % <5” - 2%) 2 1 (q)

Talk by D. Boer ...



Correlations limit results for VL

E\E m = Qemenasd (T — 1)22(1—2)2ﬂx 2G W (z,q1 )+ cos(2¢) xh'(z,q.)
Y Bl dPkad2h TN BT+, |26 _@an)+ cos(29) whi (w1
func of q
z is long. momentum fraction of photon carried by quark e; =2(1-2)Q?

€ Azimuthal anisotropy is in angle

between P and q, denoted by ¢

o Is hﬁ_l) important at small x?




MYV model results

#® Analytical result in Gaussian approximation for G and hil)

¢ In particular, using McLerran-Venugopalan model
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¢ Limiting cases:
2
A < q < Qs,  1h') x ¢° and 2GM  In %ﬁ ~» suppression of polarization %
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Numerics: small z evolution

¢ McLerran-Venugopalan initial conditions at ¥ = Inzg/z =0

¢ Quantum evolution towards z < zg by solving JIMWLK
using Langevin method



Small z evolution

¢ Fast departure from MV (a,Y = 0)

¢ Slow evolution towards smaller x

h{tgH

¢ Emission of small = gluons reduces degree of
polarization.
q. is scaled by exponentially growing Qs (Y):
ratio at fixed ¢, decreases with rapidity.
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A. Dumitru, T. Lappi & V. S. Phys.Rev.Lett. 115 (2015) 25, 252301



Second harmonics of azimuthal anisotropy

| /5=100 GeV

04 172

@ Azimuthal anisotropy

va(PyL,q1) = (cos2¢)

4.5 GeV, qr)

vo(Pr

¢ Fixed coupling results (“f.c.”): as = 0.15

@ At a fixed P, no significant dependence on

prescription for a;
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A. Dumitru, T. Lappi & V. S. Phys.Rev.Lett. 115 (2015) 25, 252301



Can it be measured at an EIC?

@ Signal on partonic level; does it survive after jet reconstruction?
¢ Kinematic range at a future EIC is limited

@ How significant signal compared to background?



MCDijet: Monte-Carlo generator

To answer these questions: MCDijet

hitps://github.com /vskokov/McDijet
A. Dumitru, V. S., T. Ullrich, Phys.Rev. C99 (2019), 015204, arXiv:1809.02615

¢ Input: collision energy +/s and atomic number A
¢ @, and target area are adjusted according to A
¢ Output: partons’ 4-momentum etc

¢ Pythia afterburner: partons — particles

@ Jet reconstruction

¢ /5 =90 GeV only;
/s = 40 GeV does not provide sufficient kinemaic range to extract signal
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Reconstructed S vs partons

¢ Partons from MCDijet — parton shower algorithm from Pythia 8.2 — jets
¢ kt-algorithm from FastJet package with cone radius R =1
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Reconstructed jets vs partons
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¢ Momentum imbalance ¢ is well reproduced (important to extract distr. funct.)

¢ Significant distortion for total momentum of dijet P
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Reconstructed jets vs partons
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¢ 7/2 phase shift between transversal and longitudinal photon polarizations
@ Reconstructed jets well reproduce original anisotropy

¢ Loss of dijet yield ~ 25% due to low-p, particles
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Background

¢ MCDijet does not generate complete event

¢ PYTHIAG to study underlying activity

¢ Count f; +~* — fi +¢gand g +~* — f; + f; as signal; rest as background
¢ 1 <17 < 2.5 to minimize background from beam remnants
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Acceptance: PYTHIA

¢ PYTHIA generates negative vy due to limited 1 acceptance
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@ The origin is due to trivial kinematics. Large values of z — 1 are biased toward ¢ ~ w
Small values of z — 0 are biased toward ¢ = 0
¢ Finite rapidity acceptance generate a positive and finite vy
@ Measurements at an EIC will need to be corrected for this finite acceptance effect
@ We subtract this modulation in our analysis
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Extracted signal
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¢ Lines: Combined fit based on LO dijet production cross section
¢ Proper measurement will require integrated luminosities > 20 fb=1 /A 16



¢ Ratio ¢, /P, is not very small; thus corrections to correlation limit can be important
@ Corrections come in two forms:

contributing to higher order harmonics cos 4¢; they are suppressed by ¢% /P?
contributing to isotropic and cos 2¢; they are suppressed by Q2/P? log P, /A

¢ Estimates show that these corrections may modify signal by 25%

A. Dumitry € V. Skokov, arXiv:1605.02739
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Conclusions

@ 5-10% azimuthal anisotropy can be expected for EIC kinematics
¢ Reconstructed dijets reflect original partonic anisotropy remarkably well

¢ Unavoidable finite acceptance range leads to kinematic bias and non-zero
“background” azimuthal anisotropy
It was subtracted in our analysis
Measurements will need to be corrected for this acceptance effect

¢ Based on estimate of background from Pythia: to extract anisotropy, and thus
xhgg ) / mGgg) would require integrated luminosity 20 fb=!/A4
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Kinematic range for EIC
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¢ Substantial effect can only be observed at largest energy.
¢ Magnitude of P, must be sufficiently large to allow jet reconstruction.

¢ To probe hV) wide range of ¢, and P, is required.



Acceptance

@ This is all valid for a wide acceptance range in rapidity

@ There is momentous correlations of the angle with n
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Introduction

At small z, there are two different unintegrated gluon distributions (UGD):

# Dipole gluon distribution (G®) 4 linearly polarized partner (h(?).
Appears in many processes. Small x evolution is well understood.
Maximal polarization zh? = 2G®?

® Weizsicker-Williams (WW) gluon distribution (G™) + linearly polarized partner (h™).
Degree of polarization is z- and transverse momentum dependent

DIS DY SIDIS pA — ~jet X ep— e/ QQX pp = Mo p X pp — J/Py X PA = j1joX
epﬂe/jljzx pp — HX pp — YTy X

¢ (ww) x x x x v v v v
() (Dp) v Vv N N X X X v

pp = vy X pA — ~* jet X ep > e/ QQX PP = nep X pp = J/Yy X

ep — e j1i2 X pp — HX pp — Ty X

(D (ww) N X N v v
(2 (DP) X Vv X X X

Daniél Boer, arXiv:1611.06089



First correction to correlation limit at small x I

@ General small x expression for dijet cross section

do_'y* A—qgX
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¢ For arbitrary ki and ko, one expects presence of non-trivial (cos2n¢),n € Z

@ First correction to correlation limit (suppressed by 1/P?) includes terms o (q - P)? and thus
results in (cos4¢) £ 0



First correction to correlation limit at small x II

¢ Derivation is tedious but straight forward (see details in 1605.02739)

¢ Expectation of Wilson lines

(Tr UGe)UT () U (x)U " (x2)) — (Tr U(x1)U" (x2)) — (Tr U(x1)U" (x53))
Ne
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is expanded in series wrt u = x; — X2 and v’ = x| — x5:
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¢ Following combination is relevant (momentum space)
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@ G (x,¢%) results in corrections to isotropic and (cos 2¢), as well as non-trivial (cosdd). T
will focus on (cos4o).



First correction to correlation limit at small x ITI

@ The amplitude of cos4¢ is determined by

2Nc ijmn H~ijmn
@2((17,(]2) = _a_$3j g J (x,q2) .

e

where 5" is projector extracting o< cos 4¢
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¢ For MV model
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@ 2,(42) is positive-definite function
¢ Limiting cases: A[g < ¢ € Qs  ®2(¢°) ~ (Ne/aglog QE/AIZR) S14% 4> Qs, @®2(d?) = (No/V224way) (S, /472) Q2




MYV results
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These functions determine amplitudes of
cos 2n¢ contributions to dijet angular
distributions for n = 0, 1, 2, respectively.

A. Dumitru and V. S., arXiv:1605.02739



Dijet cross section

Dijet cross section to this order
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MYV results

(cos 2¢) and (cos4¢) in v; + A — g + ¢ dijet production from MV model:

0.30

— (cos2¢)

0.25

0.20

0.15

0.10

0.05

2=1/2, P =45Q,

(cos4¢) can be safely neglected in first approximation



Monte-Carlo Event generator

¢ MecDijet: Dijet in DIS event generator https://github.com/vskokov/McDijet
¢ Input: collision energy /s and atomic number A

¢ @, and target area are adjusted according to A

¢ Output: partons’ 4-momentum etc

¢ Pythia afterburner: partons — particles

¢ Jet reconstruction

Goal is to study feasibility of extracting signal and its dependence on atomic number, A,
and collision energy, /s


https://github.com/vskokov/McDijet
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