https://500px.com/photo/169916881/Almost-summit-by-Jin-Huang

A Data Acquisition System for the Electron Ion Collider

Jin Huang (BNL) Martin Purschke (BNL)

Thanks to the inputs from many of our colleagues!

EIC Detector Concepts

See also: Streaming Readout for EIC – J. Bernauer

EIC: unique collider → unique real-time system challenges

	EIC	RHIC	LHC → HL-LHC
Collision species	$\vec{e} + \vec{p}, \vec{e} + A$	$\vec{p} + \vec{p}/A, A + A$	p + p/A, $A + A$
Top x-N C.M. energy	140 GeV	510 GeV	13 TeV
Bunch spacing	2-10 ns	100 ns	25 ns
Peak x-N luminosity	10 ³⁴ cm ⁻² s ⁻¹	10 ³² cm ⁻² s ⁻¹	$10^{34} \rightarrow 10^{35} \mathrm{cm}^{-2} \mathrm{s}^{-1}$
x-N cross section	50 µb	40 mb	80 mb
Top collision rate	500 kHz	10 MHz	1-6 GHz
dN _{ch} /dη in p+p/e+p	0.1-Few	~3	~6
Charged particle rate	4M N _{ch} /s	60M N _{ch} /s	30G+ <i>N</i> _{ch} /s

- EIC luminosity is high, but collision cross section is small ($\propto \alpha_{EM}^2$) \rightarrow low collision rate
- Lower collision rate and small event size \rightarrow signal data rate is low
- But events are precious and have diverse topology.
 Background and systematic control is crucial

sPHENIX and sPHENIX based EIC detector

Recent successful PD-2/3 review

LOI: arXiv:1402.1209 [nucl-ex] Update: sPH-cQCD-2018-001 https://indico.bnl.gov/event/5283/

Solenoid Flux return
 Electromagnetic calorimeter
 Hadron calorimeter

Central trackingForward trackingParticle ID

Rate in Geant4 full detector simulation Sum collision + beam gas

sPH-cQCD-2018-001: https://indico.bnl.gov/event/5283/

Simulation: <u>https://github.com/sPHENIX-Collaboration/singularity</u>

e+p DIS 18+275 GeV/c Q² ~ 100 (GeV/c)²

Beam gas event p + p, 275 GeV/c at z=-4 m

BROOKHAVEN NATIONAL LABORATOR

Jin Huang, Martin Purschke

Rate in Geant4 full detector simulation Sum collision + beam gas

sPH-cQCD-2018-001: https://indico.bnl.gov/event/5283/, Simulation: https://github.com/sPHENIX-Collaboration/singularity

- What we want to record: total collision signal ~ 100 Gbps @ 10^{34} cm⁻² s⁻¹ less than sPHENIX peak disk rate
- Vac profile based on HERA experience (assuming 10⁻⁹ mbar)
 - \rightarrow Overall ~ 1 Gbps @ 12kHz p+p(beam gas) interaction, << EIC collision signal data rate
 - Thanks to the discussions with E. Aschenauer, A. Kiselev, and C. Hyde 0
- We will be happy to collaborate other source of background and noises (e.g. synchrotron)

Strategy for an EIC real-time system

- For the signal data rate from EIC (100 Gbps), we can aim for filtering-out and streaming all collision in raw data without a hardware-based global triggering
 - Diversity of EIC event topology \rightarrow streaming DAQ enables expected and unexpected physics
 - Streaming minimizing systematics by avoiding hardware trigger decision, keeping background and history
 - At 500kHz event rate, multi-µs-integration detectors would require streaming, e.g. TPC, MAPS

Requirement

- All front-end to continuously digitize data or self-triggering
 e.g. PHENIX FVTX, STAR eTOF, all sPHENIX trackers, any many prototypes in this workshop
- Reliably synchronize all front-ends and identify faults
- Recording all collision data (100 Gbps if raw)
- If needed, filtering out background with low signal loss (10⁻⁴?)
- Requiring reliable data flow \rightarrow control systematics:
- Low data loss rate $< 10^{-4}$ (?) and/or loss in a deterministic manor

See also: Streaming Readout for EIC – J. Bernauer

FELIX-based DAQ for EIC

- Full streaming readout front-end (buffer length : µs)
 → DAQ interface to commodity computing via PCIe-based FPGA cards (FELIX)
 → Disk/tape storage of streaming time-framed zero-suppressed raw data (buffer length : s)
 → Collision event tagging in offline production (latency : days)
- FELIX-like DAQ interface?

IONAL LABORATORY

- Deterministic transmission from FEE up to server memory, buffering and busy generation
- Current generation: 48x 10Gbps bi-direction IO, bridging μs-level FEE buffer length with ms+ DAQ network time scale, Interface with commodity computing via PCIe @ ~100Gbps. x2 rate in next gen.
- Distribute experiment timing and synchronization cross large system
- Similar architecture have wide support in 2020+ for high throughput DAQ e.g. ATLAS, ALICE, LHCb, sPHENIX (next slide), CBM, BELLE2

Jin Huang <jhuang@bnl.gov>

- > 2018: Cost/schedule review and DOE approval for production start of long lead-time items (CD-1/3A)
- 2019: successful PD-2/3B review; 2023: First data
 - All tracker front end support streaming readout.
 - DAQ disk throughput for 9M particle/s + pile ups (> EIC ~4M particle/s)

Test stands: SAMPA for GEM trackers

Recent test beam in June 2019

<u>RC DAQ</u> in EIC-themed campaigns

HCDAG	Control
mip	vm2
Runnin	g for 9s
Run:	1377
Events:	419
Volume:	0.1795
File: rcdaq-000	01377-0000.evt
Clo	ose
Ei	nd
🔿 🔿 💿 📉 RCDAQ Status	
RCDAQ Status	
mlpvm2	
Running for 8 s	
Run: 1375	
Events: 374	
Volume: 0.160316 N	ИВ
File: rcdaq-00001375-000	0.evt
RCDAQ Control	
RCDAQ Control	
mlpvm2	
Stopped Run 13	72
Run: -1	
Events: 0	
Volume: 0 MB	
Logging enabled	
Close	
Begin	

RY

Dual-sided PWO readout (2017

Jin Huang, Martin Purschke

Future explorations, BNL LDRD 19-026: Common development for Advanced DAQ

BNL 712 - series PCIe Card

Addressing common challenge cross multi-discipline: Advance DAQ with high throughput

Will be happy to support joint EIC DAQ R&Ds

Jin Huang, Martin Purschke

Summary

- Signal Data rate estimated for the EIC detector, which defines the EIC DAQ strategy:
 - 100 Gbps collision signal rate, possible to stream record all collision data
 - Would further require background filtering, only in case background rate >> signal rate
- An EIC DAQ concept based on FELIX-type DAQ interface
 - Similar architecture have wide support in 2020+ for high throughput DAQ e.g. ATLAS, ALICE, LHCb, sPHENIX, CBM, BELLE2
 - Deterministically bridging custom front-end with commodity computing
 - As early implementation of such architecture: sPHENIX will use a hybrid DAQ joining streaming tracker and triggered calorimeters
- Welcome to joint R&D for EIC DAQ

PHENIX/FVTX streaming readout

sPHENIX SAMPA + FELIX DAQ chain reading out EIC GEM detectors

15

Extra information

Jin Huang, Martin Purschke

Strategy for an EIC real-time system

- In a digital pipelined real-time system, all channels are digitized at all times.
 Data reduction in real-time to fit within bandwidth + buffer constraints
 - A commonly used strategy in data reduction is global triggering to selectively record a small fraction of collisions.
 - However, global triggering is not required if [system throughput > rate from all collisions]
 - Data reduction beyond global triggering : e.g. zero-suppression (in ASIC/FPGA), feature building (e.g. clustering), online analysis (e.g. online tracking)
- For the signal data rate from EIC (100 Gbps), we can aim for filtering-out and streaming all collision in raw data without a hardware-based global triggering
 - One may also consider a trigger-streaming hybrid system (e.g. STAR eTOF DAQ, sPHENIX hybrid-DAQ in Martin's talk), which can quantify efficiency/bias in streaming data reduction, calibration, filtering and be resilient at high background rate

Jin Huang, Martin Purschke

Tonko's estimation:

Signal rate = 16*8 Gbps ~ 100 Gbps @ 10³³ cm⁻² s^{-1,} 200kHz collision How about in G4:

Tonko's estimation (2015) The eRHIC Detector ("BeAST") Readout Scheme

Detector	Bytes per track		
TPC	100 x (80+4+4) ~ 9000		
Silicon	7 x (4+4+4) ~ 90		
RICH	20 x (4+4+4) ~ 250		
EMCal	1 x (4+4+4) ~ 20		
HCal	1 x (4+4+4) ~ 20		
Total per track	9.4 kB		
For 1.7M tracks/s	(1.7M x 9.4 kB =) 16 GB/s		

e+p collision 18+275 GeV/c DIS @ Q² ~ 100 (GeV/c)²

Jin Huang, Martin Pursc

Full detector "Minimal bias" EIC events in sPHENIX framework: quick first look

Multiplicity check for all particles Minimal bias Pythia6 e+p 20 GeV + 250 GeV 53 µb cross section

BNL EIC taskforce studies https://wiki.bnl.gov/eic/index.php/Detector Design Requirements

Based on BNL EIC task-force eRHIC-pythia6 55ub sample

pythia.ep.2	20x250.1Meven	ts.Ra	dCor=0.root		
CKIN(3)	changed	from	0.00000	to	0.0000
CKIN(4)	changed	from	-1.00000	to	-1.00000

19

GEANT4-based detector simulation for DAQ simulation: tracker

sPH-cQCD-2018-001, https://indico.bnl.gov/event/5283/

Extract mean value/collision that produces average signal data rate and tails that produce the buffer depth and latency requirements

Raw data: 16 bit / MAPS hit

Raw data: $3x5 \ 10 \ bit / TPC \ hit$ + headers (60 bits)

3x10 signal hit / collision \rightarrow 0.2 Gbps @10³⁴ cm⁻²s⁻¹

- MAPS is vulnerable to beam background see later slides
- ALPIDE MAPS noise are low, expect 10⁻⁶ /pixel/strobe, 200M pixel, 3us strobe → ~1Gbps

Raw data: 3x5 10 bit / GEM hit + headers (60 bits)

Jin Huang, Martin Purschke

GEANT4-based detector simulation for DAQ simulation: central calorimeters

Raw data: 31x 14 bit / active tower +padding + headers ~ 512 bits / active tower

sPH-cQCD-2018-001, https://indico.bnl.gov/event/5283/

2019 EIC User Meeting

Jin Huang, Martin Purschke

GEANT4-based detector simulation for DAQ simulation: forward calorimeters

Raw data: 31x 14 bit / active tower +padding + headers ~ 512 bits / active tower

Jin Huang, Martin Purschke

22

EIC preliminary data rate summary

sPH-cQCD-2018-001, https://indico.bnl.gov/event/5283/

- Tracker + calorimeter ~ 40 Gbps
- + PID detector + 2x for noise ~ 100 Gbps
- Signal-collision data rate of 100 Gbps seems quite manageable,
 - sPHENIX TPC peak disk rate of 200 Gbps (See Martin's talk)
- Machine background and noise would be critical in finalizing the total data rate
 - From on-going EIC/sPHENIX R&D prototyping will show noise level from state-of-art MAPS and SAMPA ASICs, e.g. ALPIDE MAPS noise rate ~ 1 Gbps
 - Enough FPGA/CPU resource with prevision for noise filtering in EIC online system

Beam gas estimation for eRHIC detectors

Assuming flat 10e-9 mbar vac in experimental region

Jin Huang, Martin Purschke

Beam-gas interactions

- p + p (beam gas) cross section ~ 40 mb @ 250 GeV
- Beam gas interaction rate = 2.65e10(H₂/cm²/10m) * 2(proton/H₂) * 40e-27(40mb→cm²) * 1(A) / 1.6e-19(C/proton) = 13kHz / 10m beam line < 10% EIC collision rate</p>

The following estimation assumes

- HERA inspired flat 10e-9 mbar vac in experimental region of |z|<450 cm
- 2M M.B. Pythia-8 beam gas events simulated in Geant4 full detector

Courtesy: E.C. Aschenauer eRHIC pre-CDR review

Vacuum pressure	10 ⁻⁹ mbar
Beampipe temperature	Room temperature
Average atomic weight of gas	Hydrogen (H ²)
Molecular density (for 10 m pipe)	2.65 x 10 ¹⁰ molecules/cm ²
Luminosity (Ring-Ring)	10.05 x 10 ³³ cm ⁻² s ⁻¹
Bunch intensity (R-R) (e/p)	15.1 / 6.0 x 10 ¹⁰
Beam Current (R-R) (e/p)	2.5 / 1 A
Bunch spacing (Ring-Ring)	8.7 ns \rightarrow 1320 bunches
ElectronxProton beam energy	10 GeV x 275 GeV

Beam gas multiplicity

- 250 GeV/c proton beam on H₂ gas target
- C.M. rapidity~3.1, sqrt[s] ~ 22 GeV, cross section~40 mb
- Lab per-pseudorapidity multiplicity is higher than e+p, but not orders of magnitude higher

2019 EIC User Meeting

Beam gas event in a detector

- > 250 GeV proton beam on proton beam gas, sqrt[s] ~ 22 GeV
- For this illustration, use pythia-8 very-hard interaction event (q^hat > 5 GeV/c)

Beam gas event in a detector

- > 250 GeV proton beam on proton beam gas, sqrt[s] ~ 22 GeV
- For this illustration, use pythia-8 very-hard interaction event (q^hat > 5 GeV/c)

Beam gas vertex sensitivity - tracker

- Average active hit for each beam gas vertex bin
- > 250 GeV proton beam on proton beam gas, Pythia-8 M.B.

Beam gas vertex sensitivity – calo.

- Average active hit for each beam gas vertex bin
- > 250 GeV proton beam on proton beam gas, Pythia-8 M.B.

GEANT4-based detector simulation: beam gas event on tracker

Extract mean value/collision (signal data rate) and tails (relates to buffer depth requirement)

Jin Huang, Martin Purschke

2019 EIC User Meeting

31

GEANT4-based detector simulation: beam gas event on central calorimeters

Raw data: 31x 14 bit / active tower +padding + headers ~ 512 bits / active tower

Jin Huang, Martin Purschke

GEANT4-based detector simulation: beam gas event on forward calorimeters

Raw data: 31x 14 bit / active tower +padding + headers ~ 512 bits / active tower

NATIONAL LABORATOR

Jin Huang, Martin Purschke

33

Rate summary for beam gas

- Very similar rate distribution among subsystems when compared with EIC collisions
- With an assumed vacuum profile (10⁻⁹ mbar flat within experiment region):
 - Overall ~ 1 Gbps @ 12kHz beam gas at 10^{-9} mbar in |z| < 450 cm (detector region)
 - << EIC collision signal data rate
- Further investigation needed:
 - In the experimental region : Dynamic vac profile
 - Beyond experiment region: beam gas profile, possible passive shielding and active veto

Jin Huang, Martin Purschke

34

Rate summary

Sum collision + beam gas

- Total ~ 100 Gbps @ 10³⁴ cm⁻² s⁻¹
 - < sPHENIX peak disk rate
 - Beam gas data rate << collision data rate
- Further to be evaluated with more concrete detector and accelerator development: Beam gas profile, synchrotron radiation, detector noise

Highly segmented detectors/ TOPsiDE

- Highly spatial and/or time segmented detectors would induce higher event size
- TOPSIDE would use pixelated calorimeter and produce x O(100-1000) calorimeter data rate depending on segmentation and digitizer assumptions
- TOPSIDE propose to use LGAD tracker
 - Low Gain Amplifying Detectors (LGAD) + MAPS to enhance charge collection and timing
 - The signal data rate would not change in the leading order (e.g. 3-hit x 16bit/cluster)
 - Depending on LGAD R&D, the noise rate could be higher (i.e. higher noise/pixel, shorter integration)
- ▶ TOPSIDE may start with full streaming at 10³³ cm⁻² s⁻¹.
- However, assuming same data log rate (say 100Gbps), at full EIC lumi it may require global triggering to record a subset of collisions and/or real-time feature building (e.g. cluster fitting/tracking, See talk JD/TU/SY).

Per-strobe ALPIDE multiplicity

Four factor contributes in a MC simulation:

- Per-collision multiplicity, PDF as in last page
- Number of pile up collision, Poisson distributed
- The triggered collision, |z|<10 cm (trigger mode only)
- Number of noise, Poisson distributed

Comments received:

- Duplicated hits between strobes are not included yet (Thanks to Jo)
- UPC electron background not included (Thanks to Xin)
- Aiming for 10⁻⁶ noise in final detector (Many)

37

p+p multiplicity, per-strobe, chip-4

- p+p collision related data is completely dominated by pile-ups
- Central limit theorem: High number of pile up → low non-Gauss high tails
- Continuous-mode is quite safe @ 10-us strobe window

Au+Au multiplicity, per-strobe, chip-4

- Can we do better?
 - Further reducing collision rate to 50kHz by introducing a beam crossing angle
 - Reducing noise by 1/10 to 10⁻⁵ noise per strobe
- Still challenging for continuous , but plausible to have overflow dead-time < 0.1% further using multi-hit buffer on chip (eating the safety factor)

Timing distributions

- All PHENIX/sPHENIX FEE are synced to beam clock/counter. Expecting similar for EIC detector
- BNL-712/FELIX can receive clock of multiple protocols (SPF+, White Rabbit, TTC, ...) via a timing mezzanine card
- SI5345 jitter cleaner control jitter to <0.1 ps
- BNL-712/FELIX carries 48x 10 Gbps downlink fiber for control data to FEE. Beam clock and sync word can be encoded on fiber (e.g. 8b10b encoding)
- For EIC hadron beam RF, extra cautious need to be taken for hadron machine ramp from low gamma to high gamma, which leads to clock frequency variation [next slide].

TTC

NATIONAL LABORATORY

ning	mezzanine	cards	
	The second s		

TTC-PON

White Rabbit

Device	SI5338	SI5345	SI5341		
Jitter (ps)	8.58	0.09	6.39		
Device	CDCM6208	LMK03200	LMK03033		
Jitter (ps)	2.06	5.91	2.74		
Device	CDCE62005				
Jitter (ps)	8.61				
The litter from 10 kHz to 1 MHz					

The litter from 10 kHz to 1 MHz Courtesy of Kai Chen (BNL)

Kai Chen - FELIX Design Review

Jin Huang, Martin Purschke

40

Embedded clock demo with variable beam clock frequency

Jin Huang, Martin Purschke

ZOTA EIC OPEL MEETING

+1

1. Suppression noise/beam background

- Considering that all tracker data is continuously recorded after zero suppression
- Half of collision-originated hits in tracker do not belong to a reconstructable particle trajectory (track)
- Electronic detector noise and collider backgrounds contribute more "noise" hits
- We could have a ML algorithm, e.g. DNN, to run in real-time on DAQ FPGA (e.g. Kintex Ultrascale) to filter out obvious hits that do not belong to a track
 - Unlike real-time triggering, this algorithm operate at low rejection, high efficiency ROC working point
- By filtering out noise hits, we could save on data storage volume, more resilient to high background operation

Publicly available dataset for ML/AI

- Already have 4M simulated events in sPHENIX silicon tracking detector
 - <u>https://github.com/sPHENIX-Collaboration/HFMLTrigger</u>
 - JSON formatted data, self explanatory fields
- Can generate files for EIC collision + detector noise + background stream for algorithm development and performance evaluation

Open data used in DCNN learning

Courtesy of, Dantong Yu (NJIT), Yu Sun, Jason Chen (SBU) Conversion of vertex tracker data (3D hits) into 2D image with color coding of layers

Azimuthal index

Azimuthal index

All MAPS hits pp 200 GeV, EIC event would be similar

Reconstruct-able MVTX hits for tracks, same event

Jin Huang, Martin Purschke

Open data used in DCNN learning

- Collaboration with computer scientists at NJ Inst. Tech and StonyBrook U.
- Exploring FPGA-HLS of Deep Convolutional Neural Network (DCNN) with capabilities of unsupervised-learning on data based on auto-encoder network
- Output of network can be used to filter out non-track hits
- "Code" level in the autoencoder may be used in another ML classifier for event tagging and event classification

TPC DAQ in streaming mode

NATIONAL LABORATORY

Jin Huang, Martin Purschke

46

sPHENIX rate VS EIC charge track rate

TPC data rate

- TPC is the dominating data contributor to sPHENIX event
- Using past <dNch/deta>x2 estimation, expect event size is
 - Single MB collision, no pile up:
 - 1.05 MB/event (before compression)
 - Year-5 average, MB + 170kHz AuAu (plots below):
 - 3.3 MB /event (before compression)
 - 240 Gbps (15kHz trigger, LZO compression)
- Now simulating the event size and data rate in Geant4 simulation.

Buffer Box hardware

We don't have to buy the off-the-shelf PCs until 2022 If we would buy today, this would be the candidate for a buffer box:

\$34,000 fully equipped 84 disk slots x 8TB = 672TB raw size

Other PCs (SEB, EBDC, ATP) are standard rack-mounted PCs, too

Total Data volumes

Year 1: 47 billion events * 1.7 MB = 75 PB

LTO-9: 75 * 1024 TB / 20TB = 3840 tape cartridges

LTO-10: 75 * 1024 TB / 48TB = 1600 cartridges

p + pYear 2,4: 96 billion events * 1.6 MB = 143 PB LTO-9: 143 * 1024 TB / 20TB = 7300 tape cartridges LTO-10: 143 * 1024 TB / 48TB = 3500 cartridges

~90 PB of data on tapes

~900 TB total disk cache

LTO tape vendors announce LTO-9 and LTO-10

LTO tape vendors extend the LTO roadmap to include generations 9 and 10 with increasing capacity and transfer rates.

Au + Au

The 2023-era tape drives ("LTO-9") can sustain about 4.5GBit/s realworld throughput (20TB capacity)

Next-gen LTO-10 has 8GBit/s throughput (48TB)

Peak Data rates

Peak data rates determine how many tape drives will be needed Based on a "high performance week" with 75% * 75% combined uptime in Year-1 75% * 80% combined uptime in year-2,3,5 (instead of 60% * 80%)

Year 1: 5 billion events * 1.7 MB * 8 / (7*24*3600) = 109 Gbit/s peak (14.5 weeks)

Year 2,4: 5.5 billion events * 1.6 MB * 8 / (7*24*3600) = 113 Gbit/s peak (22 weeks)

Year 3,5: 6 billion events * 2.3 MB * 8 / (7*24*3600) = 178 Gbit/s peak (22 weeks)

Year 1, 2, 4

LTO-9: 4.5 Gbit/s \rightarrow 25 tape drives

LTO-10: 8 Gbit/s \rightarrow 14 Tape drives

Year 3,5

LTO-10: 8 Gbit/s \rightarrow 23 Tape drives

Evolution of the RHIC 1008 Interaction region

		1
PHENIX experiment	SPHENIX	An EIC detector
 16y+ operation Broad spectrum of physics 180+ physics papers with 25k citations 1.4-M channel streaming 	 Comprehensive central upgrade base on previous BaBar magnet Rich jet and HF physics program → Microscopic nature of QGP 	 Path of PHENIX upgrade leads to a capable EIC detector Large coverage of tracking, calorimetry and PID Full streaming DAQ based on sPHENIX
	arXiv:1501.06197 [nucl-ex]	arXiv:1402.1209 [nucl-ex]
~2000 2017-	\rightarrow 2023, CD-1/3A Approved >2	Update: sPH-cQCD-2018-00 2025 Time
RHIC: A+A, spin-polarize	d p+p, spin-polarized p+A	EIC: e+p, e+A
PROOVHRUEN	V	· · · · · · · · · · · · · · · · · · ·

NATIONAL LABORATORY

52

PHENIX Data validation & data processing in near-real-time

- PHENIX validate data and perform majority calibration in near-real-time via online system using a subset of raw data prior to disk write
- PHENIX has enough CPU to final process all data in real-time, but the limitation is usually special data need and manpower for calibration

J/Psi spectrum in Cu+Au @ sqrtS = 200 GeV via run-time data production & analysis,

sPHENIX Time projection chamber (TPC)

- Next-gen TPC w/ gateless and continuous readout: $\delta p/p < 2\%$ for $p_T < 10$ GeV/c
- Ne-based gas for fast drift (13us). qGEM amplification and zigzag mini-pads.
- ▶ 160k channels 10b flash ADC @ 20MHz with SAMPA ASIC -> 2 Tbps stream rate.

sPHENIX MVTX

- ▶ 200M pixel monolithic active pixel sensors (MAPS) vertex tracker (MVTX) \rightarrow 5µm position resolution, 0.3% X0 / layer \rightarrow <50 µ m DCA @ 1 GeV/c
- In close collaboration with ALICE & ATLAS phase-1 upgrades

Highlight of sPHENIX prototypes in action

Feb-July 2018 FermiLab Test beam facility, test of each sPHENIX detector subsystem

4x MVTX sensor in beam

<image>

BROOKHAVEN NATIONAL LABORATORY

sPHENIX DAQ

eRHIC and JLEIC key parameters at max Lumi points

design	eRHIC		JLEIC	
parameter	proton	electron	proton	electron
center-of-mass energy [GeV]	105		44.7	
energy [GeV]	275	10	100	5
number of bunches	1320		3228	
particles per bunch $[10^{10}]$	6.0	15.1	0.98	3.7
beam current [A]	1.0	2.5	0.75	2.8
horizontal emittance [nm]	9.2	20.0	4.7	5.5
vertical emittance [nm]	1.3	1.0	0.94	1.1
β_x^* [cm]	90	42	6	5.1
β_{u}^{*} [cm]	4.0	5.0	1.2	1
tunes (Q_x, Q_y)	.315/.305	.08/.06	.081/.132	.53/.567
hor. beam-beam parameter	0.013	0.064	0.015	0.068
vert. beam-beam parameter	0.007	0.1	0.015	0.068
IBS growth time hor./long. [min]	126/120	n/a	0.7/2.3	n/a
synchrotron radiation power [MW]	n/a	9.2	n/a	2.7
bunch length [cm]	5	1.9	1	1
hourglass and crab reduction factor	0.87		0.87	
peak luminosity $[10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	1.05		2.1	
integrated luminosity/week $[fb^{-1}]$	4.51		9.0	

Radiation map

sPHENIX-EIC Simulation, Collision only, e+p, 20+250 GeV/c, eRHIC Pythia6 Radiation dose [rad] for 10 fb^-1, collision-originated fluence only

ABORATORY

sPHENIX-EIC Simulation, Collision only, e+p, 20+250 GeV/c, eRHIC Pythia6 Min-1-MeV Charged particle fluence [N /cm²] for 10 fb^-1, collision-originated fluence only R [cm] 10¹¹ 10¹⁰ 250 10⁹ 10⁸ 200 10 10[€] 150 10⁵ 10⁴ 100 10^{3} 50 10² 10 -200 200 300 400 -400 -300 -100 0 100 Z [cm]

sPHENIX-EIC Simulation, Collision only, e+p, 20+250 GeV/c, eRHIC Pythia6

