Deeply virtual Compton Scattering off ⁴He

Sergio Scopetta

Dipartimento di Fisica e Geologia, Università di Perugia

and INFN, Sezione di Perugia, Italy

in collaboration with

Sara Fucini – Università di Perugia and INFN, Perugia, Italy Michele Viviani – INFN, Pisa, Italy

Deeply virtual Compton Scattering off 4 He - p.1

Outline

The nucleus: "a Lab for QCD fundamental studies"

Realistic calculations: use of few-body wave functions, exact solutions of the Schrödinger equation, with realistic *NN* potentials (Av18, Nijmegen, CD Bonn) and 3-body forces

Importance of GPDs of light nuclei 2 H, 3 He; HERE, 4 He :

 1 - Coherent DVCS off ⁴He : data available from JLab at 6 GeV; new data expected at 12 GeV; EIC... our calculation (not yet fully realistic) (S. Fucini, S.S., M. Viviani, Phys.Rev. C98 (2018) no.1, 015203).
 2 - Incoherent DVCS off ⁴He :

data available from JLab at 6 GeV; new data expected at 12 GeV; EIC... our preliminary results (not yet fully realistic) (S. Fucini, S.S., M. Viviani, in preparation).

My point: I do not know if realistic calculations will describe the data. I think they are necessary to distinguish effects due to "conventional" or to "exotic" nuclear structure

EMC effect in A-DIS

Measured in A(e, e')X, ratio of A to d SFs F_2 (EMC Coll., 1983)

One has $0 \le x = \frac{Q^2}{2M\nu} \le \frac{M_A}{M} \simeq A$

- $x \le 0.1$ "Shadowing region"
- $\int 0.1 \le x \le 0.2$ "Enhancement region"
- $0.2 \le x \le 0.8$ "EMC (binding) region"
- $0.8 \le x \le 1$ "Fermi motion region"
- $x \ge 1$ "TERRA INCOGNITA"

Paris, July 25^{th} , 2019

 γ^*

k'

Х

Many explanations... Which is the right one?

EMC effect: way out?

Question: Which of these transverse sections is more similar to that of a nucleus?

To answer, we should perform a *tomography...*

We can! M. Burkardt, PRD 62 (2000) 07153

Answer: Deeply Virtual Compton Scattering & Generalized Parton Distributions (GPDs)

GPDS: Definition (X. Ji PRL 78 (97) 610)

For a $J = \frac{1}{2}$ target, in a hard-exclusive process, (handbag approximation) such as (coherent) DVCS:

Paris, July 25th, 2019

the GPDs $H_q(x,\xi,\Delta^2)$ and $E_q(x,\xi,\Delta^2)$ are introduced:

 $\int \frac{d\lambda}{2\pi} e^{i\lambda x} \langle P' | \bar{\psi}_q(-\lambda n/2) \quad \gamma^{\mu} \quad \psi_q(\lambda n/2) | P \rangle = H_q(x,\xi,\Delta^2) \bar{U}(P') \gamma^{\mu} U(P) + E_q(x,\xi,\Delta^2) \bar{U}(P') \frac{i\sigma^{\mu\nu} \Delta_{\nu}}{2M} U(P) + \dots$

•
$$\Delta = P' - P, q^{\mu} = (q_0, \vec{q}), \text{ and } \bar{P} = (P + P')^{\mu}/2$$

$$x = k^+/P^+; \ \xi = \text{``skewness''} = -\Delta^+/(2\bar{P}^+)$$

$$\begin{array}{ll} & & x \leq -\xi \longrightarrow \text{GPDs describe } antiquarks; \\ & & -\xi \leq x \leq \xi \longrightarrow \text{GPDs describe } q\bar{q} \ pairs; x \geq \xi \longrightarrow \text{GPDs describe } quarks \end{array}$$

GPDs: properties

when P' = P, i.e., $\Delta^2 = \xi = 0$, one recovers the usual PDFs:

 $H_q(x,\xi,\Delta^2) \Longrightarrow H_q(x,0,0) = q(x); \quad E_q(x,0,0) \text{ unknown}$

the x-integration yields the q-contribution to the Form Factors (ffs)

$$\int dx \, H_q(x,\xi,\Delta^2) = F_1^q(\Delta^2) \qquad \int dx \, E_q(x,\xi,\Delta^2) = F_2^q(\Delta^2)$$

In impact parameter space, GPDs are *densities*:

$$ho_q(x, \vec{b}_\perp) = \int \frac{d\vec{\Delta}_\perp}{(2\pi)^2} e^{i\vec{b}_\perp \cdot \vec{\Delta}_\perp} H^q(x, 0, \Delta^2)$$

GPDs: a unique tool...

not only 3D structure, at parton level; many other aspects, e.g., contribution to the solution to the "Spin Crisis" (J.Ashman et al., EMC collaboration, PLB 206, 364 (1988)), yielding parton total angular momentum...

... but also an experimental challenge:

Hard exclusive process \longrightarrow small σ ;

Difficult extraction:

DVCS

$$T_{\mathbf{DVCS}} \propto CFF \propto \int_{-1}^{1} dx \, \frac{H_q(x,\xi,\Delta^2)}{x-\xi+i\epsilon} + \dots$$

Competition with the **BH** process! (σ asymmetries measured).

$$d\sigma \propto |T_{\mathbf{DVCS}}|^2 + |T_{\mathbf{BH}}|^2 + 2 \Re\{T_{\mathbf{DVCS}}T^*_{\mathbf{BH}}\}$$

Nevertheless, for the proton, we have results:

(Guidal et al., Rep. Prog. Phys. 2013...

Dupré, Guidal, Niccolai, Vanderhaeghen Eur.Phys.J. A53 (2017) 171)

Nuclei and DVCS tomography

Coherent DVCS: nuclear tomography

Incoherent DVCS: tomography of bound nucleons: realization of the EMC effect

Very difficult to distinguish coherent and incoherent channels (for example, in Hermes data, Airapetian et al., PRC 2011).

Paris, July 25^{th} , 2019

Large energy gap between the photons and the slow-recoiling systems: very different detection systems required at the same time... Very difficult...

Our IA approach to coherent DVCS off ⁴He

Realistic microscopic calculations are necessary. A collaboration is going on with Sara Fucini (Perugia, graduate student), Michele Viviani (INFN Pisa).

coherent DVCS in the Impulse Approximation (I.A.) to the handbag contribution:

Coherent DVCS off ⁴**He: IA formalism**

Convolution formula (E_q^N neglected) (S.Fucini, SS, M.Viviani PRC. 98 (2018) 015203):

$$H_{q}^{4}H^{e}(x,\Delta^{2},\xi) = \sum_{N} \int_{|x|}^{1} \frac{dz}{z} h_{N}^{4}H^{e}(z,\Delta^{2},\xi) H_{q}^{N}\left(\frac{x}{z},\Delta^{2},\frac{\xi}{z}\right)$$

Non-diagonal light-cone momentum distribution:

$$h_N^{4He}(z,\Delta^2,\xi) = \int dE \int d\vec{p} P_N^{4He}(\vec{p},\vec{p}+\vec{\Delta},E) \,\delta(z-\bar{p}^+/\bar{P}^+)$$
$$= \frac{M_A}{M} \int dE \int_{p_{min}}^{\infty} dp \tilde{M} p P_N^{4He}(\vec{p},\vec{p}+\vec{\Delta},E) \,\delta\left(\tilde{z}\frac{\tilde{M}}{p}-\frac{p^0}{p}-\cos\theta\right)$$

with $\xi_A = \frac{M_A}{M}\xi$, $\tilde{z} = z + \xi_A$, $\tilde{M} = \frac{M}{M_A}(M_A + \frac{\Delta^+}{\sqrt{2}})$ and M_{A-1}^{2*} is the squared mass of the final excited A - 1-body state.

One needs therefore the non-diagonal spectral function and a model for nucleon GPDs.

Well known GPDs model of Goloskokov-Kroll (EPJA 47 212 (2011)) used for the nucleonic part. In principle valid at Q^2 values larger than those of interest here.

Coherent DVCS off ⁴**He: our nuclear model input**

$$P(\vec{p}, \vec{p} + \vec{\Delta}, E) = n_0(\vec{p}, \vec{p} + \vec{\Delta})\delta(E^*) + P_1(\vec{p}, \vec{p} + \vec{\Delta}, E)$$

= $n_0(|\vec{p}|, |\vec{p} + \vec{\Delta}|, \cos\theta_{\vec{p}, \vec{p} + \vec{\Delta}})\delta(E^*) + P_1(|\vec{p}|, |\vec{p} + \vec{\Delta}|, \cos\theta_{\vec{p}, \vec{p} + \vec{\Delta}}, E)$
 $\simeq a_0(|\vec{p}|)a_0(|\vec{p} + \vec{\Delta}|)\delta(E^*) + n_1(|\vec{p}|, |\vec{p} + \vec{\Delta}|)\delta(E^* - \bar{E})$

with $n_1(|\vec{p}|) = n(|\vec{p}|) - n_0(|\vec{p}|), E = E_{min} + E^*, n_0(|\vec{p}|) = |a_0(|\vec{p}|)|^2$, and

Paris, July 25^{th} , 2019

 $\mathbf{a_0}(|\vec{p}|) = <\Phi_3(1,2,3)\chi_4\eta_4|j_0(|\vec{p}|R_{123,4})\Phi_4(1,2,3,4)>$

- \checkmark $n_0(p)$, "ground", and n(p), "total" momentum distributions, evaluated realistically through 4-body and 3-body variational CHH wave functions, within the Av18 NN interaction, including UIX three-body forces.
 - \bar{E} , average excitation energy of the recoiling system, given by the model diagonal spectral function, also based on Av18+UIX, described in M. Viviani et al., PRC 67 (2003) 034003, update of Ciofi & Simula, PRC 53 (1996) 1689.

Limits

Paris, July 25^{th} , 2019

Comparison with EG6 data: A_{LU}

S. Fucini, S.S., M. Viviani PRC 98 (2018) 015203

⁴He azimuthal beam-spin asymmetry $A_{LU}(\phi)$, for $\phi = 90^{\circ}$: 0.6 0.5 0.5 0.5 0.4 P⁴He(90 °) A_{LU}⁴He(90 °) 10 ,⁴He(90 °) 0.3 0.2 0 -0.1 0.1 -0.1 0.06 -0.1 ^{1.5} Q [GeV²] 2.5 0.15 0.2 0.25 0.3 0.08 0.1 0.12 0.14 0.16 2 -t [GeV²] х_В

results of this aproach (stars) vs EG6 data (squares)

Paris, July 25^{th} , 2019

From left to right, the quantity is shown in the experimental Q^2 , x_B and t bins, respectively: very good agreement

$$A_{LU}(\phi) = \frac{\alpha_0(\phi) \,\Im m(\mathcal{H}_A)}{\alpha_1(\phi) + \alpha_2(\phi) \,\Re e(\mathcal{H}_A) + \alpha_3(\phi) \left(\Re e(\mathcal{H}_A)^2 + \Im m(\mathcal{H}_A)^2\right)}$$

 $\Re e(\mathcal{H}_A)$ and $\Im m(\mathcal{H}_A)$ experimentally extracted fitting these data using explicit forms for the kinematic factors α_i (Belitsky et al. PRD 2009)

Comparison with EG6 data: $\Im m(\mathcal{H}_A)$ & $\Re e(\mathcal{H}_A)$

Our IA approach to incoherent DVCS off $^4\mathrm{He}$

S. Fucini, S.S., M. Viviani - in preparation

$$A_{LU}^{4,p} = \frac{d\sigma^+ - d\sigma^-}{d\sigma^+ + d\sigma^-} \qquad d\sigma^{\lambda,4} = \int dE \int d\vec{p} \, \frac{p \cdot k}{p_0 E_k} \, P^{4,p}(\vec{p},E) \, d\sigma^{\lambda,p}$$

In IA, Instant Form approach, the diagonal spectral function $P^{4,p}(\vec{p}, E)$ arises:

off-shellness driven by nuclear dynamics:

Paris, July 25^{th} , 2019

$$p_0 = M_A - \sqrt{M_{A-1}^{*2} + p^2} \simeq M - E - T_f \longrightarrow p^2 \neq M^2$$
$$\xi = Q^2 / [(p + p') \cdot (q + q')] \neq x_B / (2 - x_B)$$

number and momentum sum rules not fulfilled at the same time (one of the two slightly violated: polinomiality violated)

Incoherent DVCS off ⁴He: formalism, ingredients

General structure of the differential cross section (i = DVCS, BH, Int):

$$\frac{d\sigma_i^{\lambda,4}}{dkin} \propto \int dE \int d\vec{p} \, P^{4,p}(\vec{p},E) \, g(kin,\vec{p},E) \, A_i(kin,\vec{p},E)$$

 $d kin = dx_B dQ^2 dt d\Phi$ $g(kin, \vec{p}, E)$: a complicated function

 $A_{BH} = T_{BH}^2$, $A_{DVCS} = T_{DVCS}^2$, $A_{Int} = Int_{BH-DVCS}$ for a bound proton

$$A_{LU}^{4,p} \simeq \frac{\int dE \int d\vec{p} \, P^{4,p}(\vec{p}, E) \, g(kin, \vec{p}, E) \, Int_{BH-DVCS}(kin, \vec{p}, E)}{\int dE \int d\vec{p} \, P^{4,p}(\vec{p}, E) \, g(kin, \vec{p}, E) \, T_{BH}^2(kin, \vec{p}, E)}$$

 $T_{BH}^{2}, T_{DVCS}^{2}, Int_{BH-DVCS} \text{ for a moving bound nucleon; our expressions,} \\ \text{obtained generalizing the ones at leading twist for nucleons at rest (Belitski et al. (2002)); } \\ T_{BH}^{2} = c_{0}^{bound} + c_{1}^{bound}(\cos \Phi) + c_{2}^{bound}\cos(2\Phi) \\ \end{array}$

In $Int_{BH-DVCS}$, the H GPD in $\Im m(\mathcal{H}_N)$ evaluated in the GK model;

Av18-based model of the diagonal spectral function $P^{4,p}(\vec{p}, E)$ (M. Viviani et al., PRC 67 (2003) 034003)

Paris, July 25^{th} , 2019

Preliminary results (I)

- "preliminary" also because calculations are performed, for each experimental x_B bin, at values of t and Q^2 corresponding to an *almost* definitive experimental analysis. We are waiting to know the definitive values. We find a strong dependence on the experimental kinematics and results could slightly change.
 - In any case: the trend of EG6 data is correctly reproduced using conventional ingredients.

Preliminary results (II) - nuclear effects

Is that a medium modification of the parton structure? Actually:

$$\frac{A_{LU}^{4,p}}{A_{LU}^p} \propto \frac{Int_{DVCS-BH}^4}{Int_{DVCS-BH}^p} \frac{T_{BH}^{p,2}}{T_{BH}^{4,2}} = \frac{(nucl.mod.)_{Int}}{(nucl.mod.)_{BH}}$$

We find that the nuclear dynamics modifies the $Int_{DVCS-BH}$ and the BH cross sections in a different way; this has little to do with the parton structure. We find that the medium modification of the parton structure, present in the Compton Form Factor (GPD), by itself produces a small effect.

Deeply virtual Compton Scattering off 4 He -p.18

Incoherent DVCS off ⁴He: beyond IA; FSI?

 4 He $(e, e'\gamma p(n))X$

Paris, July 25^{th} , 2019

D Tagged! e.g., ${}^4 extsf{He}(e,e'\gamma p){}^3 extsf{H}$ (arXiv:1708.00835 [nucl-ex]) $ightarrow extsf{ElC}$!!!

Deeply virtual Compton Scattering off ⁴He – p.19

The quest for covariance

- Mandatory to achieve polynomiality for GPDs, and sum rules in DIS: number of particle and momentum sum rule not fulfilled at the same time in not covariant IA calculations
- Numerically not very relevant for forward Physics. It becomes relevant for non-diagonal observables at high momentum transfer. Example: form factors (well known since a long time, see, i.e., Cardarelli et al., PLB 357 (1995) 267)
- I do not expect big problems in the coherent case at low t; Crucial for incoherent at higher t, as well as finite t corrections (target mass corrections at least for scalar nuclei under control)

Certainly it has to be studied.

For ³He, formal developments available in a Light-Front framework

(A. Del Dotto, E. Pace, S.S., G. Salmè, PRC 95 (2017) 014001).

Calculations in progress, starting from a diagonal, spin-independent spectral function.

⁴He... Later (very cumbersome).

Deeply virtual Compton Scattering off 4 He -p.20

Conclusions

DVCS off 4 He:

Calculations (not yet realistic) with basic ingredients (GK model plus a model spectral function based on Av18 + UIX)

1 - Coherent DVCS off ⁴He:

* The data available from JLab at 6 GeV are well described (S. Fucini, S.S., M. Viviani, PRC 98 (2018) 015203).

2 - Incoherent DVCS off ⁴He:

* Preliminary results show a reasonable agreement with the data available from JLab at 6 GeV; (S. Fucini, S.S., M. Viviani, in preparation).

Paris, July 25^{th} , 2019

Straightforward and workable approach, suitable for planning new measurements. New data expected at 12 GeV and at the EIC will require much more precise nuclear description (in progress: FSI, fully realistic $P(\vec{p}, E)$...)

Great opportunities at the EIC with tagged measurements (also for (polarized) 3 He (3 H?)...)

Our spirit: introduce new ingredients one at a time