Toward a unified description of high energy cross sections at both small and large Bjorken x

Jamal Jalilian-Marian

Baruch College and CUNY Graduate Center

New York, NY

bulk of QCD phenomena happens at low p_t (small x)

A hadron/nucleus at high energy: gluon saturation

a framework for multi-particle production in QCD at small x/low p₊

Initial conditions for hydro Thermalization Long range rapidity correlations Azimuthal angular correlations Nuclear modification factor

 $\mathbf{x} \leq \mathbf{0.01}$

Pion production in pp at RHIC: kinematicscollinear factorizationCGC

GSV, PLB603 (2004) 173-183

DHJ, NPA765 (2006) 57-70

this is an extreme approximation with potentially severe consequences!

unifying saturation with high p_t (large x) physics?

<u>kinematics of saturation: where is saturation applicable?</u> jet physics, high p_t (polar and azimuthal) angular correlations cold matter energy loss, spin asymmetries,

 $full \ amplitude: \quad \mathbf{i}\mathcal{M} = \mathbf{i}\mathcal{M}_{\mathbf{eik}} + \mathbf{i}\mathcal{M}_1 + \mathbf{i}\mathcal{M}_2 + \mathbf{i}\mathcal{M}_3$

small x (eikonal) limit:
$$\begin{array}{ccc} A^{\mu}(x) & \to & n^{-}S(x^{+}, x_{t}) \\ n \cdot \overline{q} & \to & n \cdot p \end{array} \qquad i\mathcal{M} \longrightarrow i\mathcal{M}_{eik} \end{array}$$

other components of target field contribute new combinations of Wilson lines helicity amplitudes: A_{LL} target geometry: v_n at intermediate p_t

SUMMARY

CGC is a systematic approach to high energy collisions

CGC breaks down at large x (high p_t)

a significant portion of EIC phase space is at large x transition from DGLAP physics to CGC

Toward a unified formalism:

quark scattering from small and large x fields

particle production in pp, pA in both small and large x (p_t) kinematics **spin asymmetries DIS structure functions**