

Silicon vertex tracker studies for a future electron-ion collider

P. Allport, L. Gonella, P. Jones, P. Newman, H. Wennlöf

Outline

- Silicon vertex tracker
 - Why is it important?
- Simulations
 - Geometric parameters of the SVT
- Pixel sensors
 - The parts that make up the SVT
- Towards an EIC-specific sensor
- Conclusions and outlook

Silicon vertex tracker

- Innermost part of the detector.
- Main detector for vertex position finding
- Contributes to momentum measurements
- Requires:
 - Very fine spatial resolution, to separate primary and secondary vertices
 - Low material, to reduce multiple scattering
- Baseline used in studies: ALICE ITS upgrade

BeAST concept (BNL) https://indico.cern.ch/event/722363/contributions/3 031250/

Open charm reconstruction

Signature is displaced (secondary) decay vertex

- Requires excellent impact parameter resolution in $r-\phi$ and z
 - Dominated by position and resolution of innermost tracking layer
 - Close as possible to beam pipe
 - Highest possible spatial resolution

Simulation studies

- Studies of full silicon vertex tracker done using EICROOT
 - A specific simulation package for the EIC, containing particle generator, GEANT propagation, hit digitisation, and track finding
- Momentum resolution and pointing resolution studied
- Different layouts and pixel sizes investigated

Simulation results – barrel pixel size

Relative momentum resolution

Transverse pointing resolution

- Pseudorapidity $|\eta| < 0.5$ (barrel region)
- Pixel size has no effect on momentum resolution
- Pointing resolution improves with reduced pixel size

Simulation results – disk pixel size

Relative momentum resolution

Transverse pointing resolution

Pseudorapidity η = 3 (disk region)

- Both momentum resolution and pointing resolution improve with reduced pixel size
- For best performance: use small pixels located near the interaction point

Pixel sensors

- Hybrids
 - Sensitive volume and readout electronics on separate chips
 - Up until now most commonly used in silicon vertex trackers
 - Radiation tolerant and fast
- Monolithic Active Pixel Sensors (MAPS)
 - Sensitive volume and readout electronics on same chip
 - Made using commercial CMOS technology
 - Thin and fine granularity
- Depleted Monolithic Active Pixel Sensors (DMAPS)
 - Utilising high voltage/high resistivity CMOS technology
 - Depleted volume intended to be as large as possible

Hybrid sensor

Monolithic sensor

Advantages of DMAPS

- Lower cost
- Mass production in commercial CMOS technologies
- Lower material budget
- Avoids bump-bonding (complex and laborious)
- Depletion gives faster and more uniform charge collection compared to standard MAPS

TowerJazz Investigator

- TowerJazz 180 nm CMOS imaging process
- Monolithic test chip, with many different pixel flavours.
 - Different pixel size, collection electrode size, spacing between collection electrode and p-well with electronics
- Two process versions; standard and modifed
 - Modified has a deep planar junction to **increase depletion**
- Measurements made using iron-55 source.

Results

Amplitude **Rise time** studies or countrained or countraine Normalised counts 0.04 0.035 Standard process Standard process Modified process Modified process 0.03 0.02 0.025 0.02 0.015 0.015 0.01 0.01 0.005 0.005 0 15 20 25 30 35 0 0 0¹ 35 40 45 50 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 5 10 Rise time [ns] Amplitude [V]

Results shown for a 28x28 µm² pixel

- For a 20x20 µm² pixel, the differences are smaller
- For larger pixels and spacing, the modified process shows worse performance

Results

- Chip in modified process dubbed TJ1B enables separate biasing of pwell and substrate (HV)
- Results of different substrate biasing shown below

- Increasing substrate voltage decreases signal-to-noise ratio
- Increasing substrate voltage makes rise-time distribution wider

Conclusions of technology investigation

- Modified process performs better up to 30x30 µm² pixel size
- Smaller difference between processes at smaller pixels
 - Due to higher relative depletion already in the standard process
- Higher bias voltage does not improve signal
 - Due to shape of electric field: minimum at pixel border
- Results consistent with simulations and published results from similar sensor [1]
- Higher potential difference between p-well and substrate gives longer path and slower charge collection

TCAD simulation - electrostatic potential minimum at pixel border:

[1] M. Munker et al. https://doi.org/10.1088/1748-0221/14/05/C05013

miniMALTA chip

- Pixels modified to fix the problem at edges
 - Extra deep p-well
 - Gap in the n layer
- Both modifications made to "funnel" the electric field towards collection electrode
- Analysis ongoing of testbeams of this chip. Initial results positive
- Publication in the works

Towards an EIC-specific sensor

- Work with chip designers at the Rutherford Appleton Laboratory (RAL)
- Goals:
 - Develop high-granularity silicon vertex tracker
 - Investigate feasibility of time-stamping layer
- Time-stamping bunch crossings keeps track of **polarisation** in event
- Challenges: timing and pixel size
- Latest results: Timing resolution of 4 ns can be reached, using a constant fraction discriminator
 - Not possible in small pixels
- Study ongoing

	EIC DMAPS Sensor	
Detector	Silicon vertex tracker	Time stamping layer
Technology	TowerJazz 180 nm	
Pixel size [μm x μm]	20x20	Max 350x350
Integration time	2000 ns	
Timing resolution	N/A	< 9 ns (BNL) < 1 ns (JLAB)
Power	< 35 mW/cm ²	
Radiation fluence	< 10 ¹⁰ 1 MeV neq/cm ²	

Conclusions and outlook

- Results so far:
 - Simulations show that we want small pixel size and detector layers close to the beampipe
 - TowerJazz modified process suits our needs, but sensor layout is crucial
 - Extra modifications can potentially be beneficial
 - Needs further investigation
- Current work:
 - Analysing miniMALTA testbeam data
 - Finish simulating different detector layouts, focusing on the area encompassing both barrel and disks
- Future work:
 - Continued sensor development with RAL
 - Full event reconstruction in simulations, investigating heavy-flavour observables
 - Test of single-photon avalanche diodes (SPADs)
 - Tests of the TowerJazz MonoPix chip (from Bonn)

Thank you for your attention

SCHOOL OF PHYSICS AND ASTRONOMY

EIC R&D eRD18

Håkan Wennlöf | EIC User Group Meeting

Backup

Simulation results

Relative momentum resolution

Transverse pointing resolution

- Relative momentum resolution better for only TPC at very low momenta, due to multiple scattering
- Everywhere else, a SVT improves performance

Simulations – different layouts

Relative momentum resolution

Transverse pointing resolution

- Different layer configurations and positions (details available on request)
- Not much difference for different configurations
- relative momentum resolution slightly worse when a thick timing layer (1.6% X₀) is added
 - This is the case in "fixed radii" as well

Results - 20x20 μ m² pixel

A.

 $\Theta 0$

Rise time vs amplitude

- 28x28 µm² pixel, HV -15 V, PWELL -6 V
- Smaller charges come from pixel border (due to charge sharing)
- Smaller charges have longer rise times
- Conclusion: Increasing HV makes charges from pixel edges arrive later at the collection electrode