New Materials for EIC Calorimeters

V. Berdnikov, T. Horn, I.L. Pegg

and the EIC Homogeneous Calorimetry eRD1 Consortium

EIC Users Group Meeting 2019 (EICUGM2019) Ecole Nationale Superieure de Chimie, July 22 – 26, 2019

EIC EM Calorimetry

Regions and Physics Goals	Calorimeter Design				
 Lepton/backward: EM Cal Resolution driven by need to determine (x, Q²) kinematics from scattered electron measurement Prefer 1.5%/√E + 0.5% Ion/forward: EM Cal Resolution driven by deep exclusive measurement energy resolution with photon and neutral pion Need to separate single-photon from two-photon events Prefer 6-7%/√E and position resolution < 3 mm 	 Inner EM Cal for for η < -2: Good resolution in angle to order 1 degree to distinguish between clusters Energy resolution to order (1.0-1.5 %/√E+0.5%) for measurements of the cluster energy Ability to withstand radiation down to at least 2-3 degree with respect to the beam line. Outer EM Cal for -2 < η < 1: Energy resolution to 7%/√E Compact readout without degrading energy resolution Readout segmentation depending on angle 				
 Barrel/mid: EM Cal Resolution driven by need to measure photons from SIDIS and DES in range 0.5-5 GeV To ensure reconstruction of neutral pion mass need: 8%/√E +1.5% (prefer 1%) 	 Barrel, EM calorimetry Compact design as space is limited Energy resolution of order 8%/√E +1.5%, and likely better 				
Ion/Forward: Hadron Cal ○ Driven by need for x-resolution in high-x measurements ○ Need Δx resolution better than 0.05 ○ For diffractive with ~50 GeV hadron energy, this means 40%/√E	 Hadron endcap: ➢ Hadron energy resolution to order 40%/√E, ➢ EM energy resolution to < (2%/√E + 1%) ➢ Jet energy resolution < (50%/√E + 3%) 				

Crystals in EMCal: PbWO₄

PbWO₄ optimal for EMCal, e.g. CMS, PANDA detectors – stopping power, fast response, etc., but also limitations, e.g. hadron radiation damage, low Light Yield

PbWO₄ radiation damage

Crystals in EMCal: PbWO₄

Expensive (\$15-25/cm³) – barrel EMCal not affordable

Another consideration: manufacturing uncertainty

- SICCAS: failure rate ~35% for crystals received 2017-19 due to major mechanical defects – an additional 15% are questionable
- CRYTUR: Strict quality control procedures so far 100% of crystals accepted, but limited raw material

Quality analysis:

5

Regions and Physics Goals	Calorimeter Design				
 Lepton/backward: EM Cal Resolution driven by need to determine (x, Q²) kinematics from scattered electron measurement Prefer 1.5%/√E + 0.5% 	 Inner EM Cal for for η < -2: Good resolution in angle to order 1 degree to distinguish between clusters Energy resolution to order (1.0-1.5 %/√E+0.5%) for measurements of the cluster energy 				
 Ion/forward: EM Cal Resolution driven by deep exclusive measurement energy resolution with photon and neutral pion Need to separate single-photon from two-photon events Prefer 6-7%/√E and position resolution < 3 mm 	 Ability to withstand radiation down to at least 2-3 degree with respect to the beam line. Outer EM Cal for -2 < η < 1: Energy resolution to 7%/√E Compact readout without degrading energy resolution Readout segmentation depending on angle 				
Barrel/mid: EM Cal Resolution driven by need to measure photons from SIDIS and DES in range 0.5-5 GeV 	 Barrel, EM calorimetry Compact design as space is limited Energy resolution of order 8%/√E +1.5%, and likely better 				
 To ensure reconstruction of neutral pion mass need: 8%/√E +1.5% (prefer 1%) Backward/lepton <u>Outer</u> EM Cal and barre – more relaxed on resolution requirements 					

An alternative active calorimeter material that is more cost effective and easier to manufacture than, e.g. crystals

Material/ Parameter	Density (g/cm³)	Rad. Length (cm)	Moliere Radius (cm)	Interact Length (cm)	Refr. Index	Emission peak	Decay time (ns)	Light Yield (pe/MeV)	Rad. Hard. (krad)	Radiation type	Z _{Eff}
(PWO)PbWO₄	8.30	0.89 0.92	2.00	20.7 18.0	2.20	450, 540	10 20-200 ~500	17-22	10	.90 scint. .10 Č	75.6
(BaO*2SiO ₂):Ce glass	3.7	3.6	2-3	~20		440, 460	22 72 450	>100	>2000 (no tests >2Mrad yet)	Scint.	51
(BaO*2SiO ₂):Ce glass w/ Gd	4.7-5.4	2.2		~20		440, 460	50 86-120 330-400	>100	>2000 (no tests >2Mrad yet)	Scint.	58

Also: (BaO*2SiO₂):Ce shows no temperature dependence

Shortcomings of earlier work:

- Macro defects, which can become increasingly acute on scale-up
- Sensitivity to electromagnetic probes

The Vitreous State Laboratory – unique expertise

Premier materials science facility with unique capabilities and expertise in glass R&D

Current R&D program includes

- Nuclear and hazardous waste stabilization
- Glass and ceramic materials development
 - Formulation optimization
 - Characterization
 - Property-composition models
- Materials corrosion and characterization
- Off-gas treatment
- Water treatment, ion exchange
- Cements, flyash
- Geopolymers
- Biophysics
- Nano-materials
- Thermoelectrics
- > Spintronics
- Scintillation detectors

The Vitreous State Laboratory – unique facility

Designing, constructing and testing large glass production systems

- VSL Joule Heated Ceramic Melter (JHCM) Systems:
 - The largest array of JHCM test systems in the US
 - The largest JHCM test platform in the US

PILOT SYSTEM SCALE-UP

DM10 and DM100 JHCM Systems at VSL

VSL DM1200 HLW Pilot Melter System

About 400,000 kg glass made from about 1 million kg feed

New Glass Scintillator Material

Glass scintillators being developed at VSL/CUA/Scintilex

Progress with new method to eliminate defects

 Standard DSB:Ce
 Scintilex formulation

 Scintilex formulation
 Scintilex formulation

 Samples made at CUA/VSL/our new method
 Scintilex with

 500 um
 500 um

Optical properties comparable or better than PbWO₄

Decay time measured with single photon counting

Light Yield

Material/ Parameter	PbWO ₄	Sample 1	Sample 2	Sample 3	Sample 4
Luminescence (nm)	420	440	440	440	440
Relative light output (compared to PbWO ₄)	1	35	16	23	11

Glass Scintillator – formulation optimization

Wavelength (nm)

Two glass formulations for calorimeter application

Glass Scintillator – Radiation Hardness

□ High dose radiation tests – progress with new method at CUA/VSL/Scintilex

VSL-Scintilex-S1

VSL-Scintilex-G4 (nominal)

Before irradiation

SCINTILEX

After 2min 160KeV Xray at >3k Gy/min

After curing

T, SC, EC series are EM radiation hard with new method too

Hadron irradiation test planned

Glass Scintillator – Initial Scale-Up

Progress with scale-up – medium-size samples produced, issues associated with further scale-up identified, solutions are being implemented and tested

Example: G4 (nominal), SC1 glass

1cm x 1cm x 0.5cm (test size)

2cm x 2cm x ~3cm (medium size)

SCINTILEX

14

Produce larger glass samples with adequate surface quality for physical, luminescence, and radiation hardness tests

- **Prototype beam test program** quantify performance and response of glass to different photosensors and streaming readout
- **Extend evaluation of glass calorimetry –** develop MC for resolution studies and matching crystal/glass, increase efforts to other regions
- Additional radiation hardness studies evaluate resistance to hadron radiation (MC40 synchrotron) and higher EM radiation doses (IPNO)
- **SBIR/STTR proposal** glass scintillator development

- PbWO₄ crystals are ideal for precision EMCal, but also have limitations and are expensive – large volume detectors are unaffordable
- Glass-based scintillators are cost-effective alternative to crystals, in particular EMCal regions with relaxed resolution requirements
 - Small samples produced at CUA/VSL/Scintilex have a factor of ten or higher light yield compared to PbWO₄
 - Initial scale-up successful medium-size samples produced without defects
 - Ongoing optimization
 - Beam test program expected to start this fall