Vector meson production 00000 GTMD equivalence

NLO computations for exclusive processes at small x

Renaud Boussarie

Brookhaven National Laboratory

EIC User Group Meeting, 2019

Vector meson production 00000 GTMD equivalence

Accessing the partonic content of hadrons with an electromagnetic probe

The	shockwave	formalism
00	000000)

Vector meson production 00000 GTMD equivalence 00000

Kinematics

$$p_{1} = p^{+} n_{1} - \frac{Q^{2}}{2s} n_{2}$$

$$p_{2} = \frac{m_{t}^{2}}{2p_{2}^{-}} n_{1} + p_{2}^{-} n_{2}$$

$$p^{+} \sim p_{2}^{-} \sim \sqrt{\frac{s}{2}}$$

Lightcone (Sudakov) vectors

$$n_1 = \sqrt{rac{1}{2}}(1, 0_{\perp}, 1), \quad n_2 = \sqrt{rac{1}{2}}(1, 0_{\perp}, -1), \quad (n_1 \cdot n_2) = 1$$

Lightcone coordinates:

$$x = (x^0, x^1, x^2, x^3) \to (x^+, x^-, \vec{x})$$
$$x^+ = x_- = (x \cdot n_2) \quad x^- = x_+ = (x \cdot n_1)$$

The shockwave formalism 00000000

Dijet production

Vector meson production

GTMD equivalence 00000

Rapidity separation

Let us split the gluonic field between "fast" and "slow" gluons

$$\begin{split} \mathcal{A}^{\mu a}(k^+,k^-,\vec{k}\,) &= & \mathcal{A}^{\mu a}_{\eta}(|k^+| > e^{\eta} p^+,k^-,\vec{k}\,) \\ &+ & b^{\mu a}_{\eta}(|k^+| < e^{\eta} p^+,k^-,\vec{k}\,) \end{split}$$

 $e^{\eta} = e^{-Y} \ll 1$

The shockwave formalism	۱
00000000	

Vector meson production

GTMD equivalence

Large longitudinal boost to the projectile frame

 $b^{+}(x^{+}, x^{-}, \vec{x}) \qquad \qquad \frac{1}{\Lambda} b^{+}(\Lambda x^{+}, \frac{x^{-}}{\Lambda}, \vec{x})$ $b^{-}(x^{+}, x^{-}, \vec{x}) \qquad \longrightarrow \qquad \Lambda b^{-}(\Lambda x^{+}, \frac{x^{-}}{\Lambda}, \vec{x})$

 $b^k(x^+,x^-,\vec{x})$ $\Lambda \sim \sqrt{\frac{s}{m_t^2}}$ $b^k(\Lambda x^+,\frac{x^-}{\Lambda},\vec{x})$

 $b^{\mu}(x) \rightarrow b^{-}(x) n_{2}^{\mu} = \delta(x^{+}) \mathbf{B}(\vec{x}) n_{2}^{\mu} + O(\sqrt{\frac{m_{t}^{2}}{s}})$ Shockwave approximation

he shockwave formalism	Dijet production	Vector meson production	GTMD equivalence
00000000	00000000000000	00000	00000
- actorized picture			

Factorized amplitude

$$\mathcal{A}^{\eta} = \int d^{D-2} \vec{z}_1 d^{D-2} \vec{z}_2 \, \Phi^{\eta}(\vec{z}_1, \vec{z}_2) \, \langle \boldsymbol{P}' | [\operatorname{Tr}(\boldsymbol{U}^{\eta}_{\vec{z}_1} \boldsymbol{U}^{\eta\dagger}_{\vec{z}_2}) - \boldsymbol{N}_c] | \boldsymbol{P} \rangle$$

Dipole operator $U_{ij}^{\eta} = \frac{1}{N_c} \text{Tr}(U_{\vec{z}_i}^{\eta} U_{\vec{z}_j}^{\eta\dagger}) - 1$ Written similarly for any number of Wilson lines in any color representation!

The shockwave	formalism
0000000000)

Vector meson production

GTMD equivalence 00000

Evolution for the dipole operator

B-JIMWLK hierarchy of equations [Balitsky, Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner]

$$\frac{\partial \mathcal{U}_{12}^{\eta}}{\partial \eta} = \frac{\alpha_{s} N_{c}}{2\pi^{2}} \int d\vec{z}_{3} \vec{z}_{12}^{2}} \left[\mathcal{U}_{13}^{\eta} + \mathcal{U}_{32}^{\eta} - \mathcal{U}_{12}^{\eta} + \mathcal{U}_{13}^{\eta} \mathcal{U}_{32}^{\eta} \right]$$
$$\frac{\partial \mathcal{U}_{13}^{\eta} \mathcal{U}_{32}^{\eta}}{\partial \eta} = \dots$$

Evolves a dipole into a double dipole

The shockwave formalism	Dijet production		GTMD equivalence
000000000	00000000000000	00000	00000
The BK equation			

Mean field approximation, or 't Hooft planar limit $N_c \to \infty$ in the dipole B-JIMWLK equation

⇒ BK equation [Balitsky, 1995] [Kovchegov, 1999]

$$\frac{\partial \langle \mathcal{U}_{12}^{\eta} \rangle}{\partial \eta} = \frac{\alpha_{s} N_{c}}{2\pi^{2}} \int d\vec{z}_{3} \frac{\vec{z}_{12}^{2}}{\vec{z}_{13}^{2} \vec{z}_{23}^{2}} \left[\langle \mathcal{U}_{13}^{\eta} \rangle + \langle \mathcal{U}_{32}^{\eta} \rangle - \langle \mathcal{U}_{12}^{\eta} \rangle + \langle \mathcal{U}_{13}^{\eta} \rangle \langle \mathcal{U}_{32}^{\eta} \rangle \right]$$

BFKL/BKP part Triple pomeron vertex

Non-linear term : saturation

The shockwave formalism

Dijet production

Vector meson production 00000 GTMD equivalence 00000

Practical use of the formalism

- Compute the upper impact factor using the effective Feynman rules
- Build non-perturbative models for the matrix elements of the Wilson line operators acting on the target states
- Solve the B-JIMWLK evolution for these matrix elements with such non-perturbative initial conditions at a typical target rapidity $\eta = Y_0$.
- Evaluate the solution at a typical projectile rapidity η = Y, or at the rapidity of the slowest gluon
- Convolute the solution and the impact factor

Exclusive diffraction allows one to probe the b_{\perp} -dependence of the non-perturbative scattering amplitude

Vector meson production 00000

Exclusive diffractive production of a forward dijet

[R.B.,A.V.Grabovsky,L.Szymanowski,S.Wallon] JHEP 1611 (2016) 149

The	shockwav	e forma	lism
	000000		

Vector meson production 00000

Exclusive dijet production

- Regge-Gribov limit : $s \gg Q^2 \gg \Lambda_{QCD}$
- Otherwise completely general kinematics
- Shockwave (CGC) Wilson line approach
- Transverse dimensional regularization $d = 2 + 2\varepsilon$, longitudinal cutoff

 $|\boldsymbol{p}_{g}^{+}| > \alpha \boldsymbol{p}_{\gamma}^{+}$

	Dijet production	
00000	0000000000000	00000

LO diagram

	t		
00000000	0000000000000	00000	00000
	Dijet production		GTMD equivalence

Diagrams contributing to the NLO correction

The shockwave formalism	Dijet production	Vector meson production	GTMD equivalence
00000000	0000000000000	00000	00000

First kind of virtual corrections

$$\mathcal{A}_{NLO}^{(1)} \propto \delta(p_q^+ + p_{ar{q}} - p_{\gamma}^+) \int d^d ec{p}_1 d^d ec{p}_2 \delta(ec{p}_q + ec{p}_{ar{q}} - ec{p}_{\gamma} - ec{p}_1 - ec{p}_2) \Phi_{V1}(ec{p}_1, ec{p}_2) \ imes C_F \left\langle P' \middle| ec{\mathcal{U}}^{lpha}(ec{p}_1, ec{p}_2) \left| P
ight
angle$$

	Dijet production		GTMD equivalence
00000000	0000000000000000	00000	00000
<u> </u>			

Second kind of virtual corrections

$$\begin{split} \mathcal{A}_{NLO}^{(2)} &\propto \delta(p_q^+ + p_{\bar{q}} - p_{\gamma}^+) \int \! d^d \vec{p}_1 d^d \vec{p}_2 d^d \vec{p}_3 \delta(\vec{p}_q + \vec{p}_{\bar{q}} - \vec{p}_{\gamma} - \vec{p}_1 - \vec{p}_2 - \vec{p}_3) \\ \times [\Phi_{V1}'(\vec{p}_1, \vec{p}_2) C_F \langle P' | \tilde{\mathcal{U}}^{\alpha}(\vec{p}_1, \vec{p}_2) | P \rangle \\ + \Phi_{V2}(\vec{p}_1, \vec{p}_2, \vec{p}_3) \langle P' | \tilde{\mathcal{W}}(\vec{p}_1, \vec{p}_2, \vec{p}_3) | P \rangle] \end{split}$$

The	shockwave	formalism
	000000	

Vector meson production

GTMD equivalence 00000

LO open $q\bar{q}g$ production

 $\begin{aligned} \mathcal{A}_{R}^{(2)} &\propto \delta(p_{q}^{+} + p_{\bar{q}} + p_{g}^{+} - p_{\gamma}^{+}) \int d^{d}\vec{p}_{1}d^{d}\vec{p}_{2}d^{d}\vec{p}_{3}\delta(\vec{p}_{q} + \vec{p}_{\bar{q}} + \vec{p}_{g} - \vec{p}_{\gamma} - \vec{p}_{1} - \vec{p}_{2} - \vec{p}_{3}) \\ &\times [\Phi_{R1}^{\prime}(\vec{p}_{1}, \vec{p}_{2}) C_{F} \langle P^{\prime} | \tilde{\mathcal{U}}^{\alpha}(\vec{p}_{1}, \vec{p}_{2}) | P \rangle \\ &+ \Phi_{R2}(\vec{p}_{1}, \vec{p}_{2}, \vec{p}_{3}) \langle P^{\prime} | \tilde{\mathcal{W}}(\vec{p}_{1}, \vec{p}_{2}, \vec{p}_{3}) | P \rangle] \end{aligned}$

$$\begin{aligned} \mathcal{A}_{R}^{(1)} &\propto \delta(p_{q}^{+} + p_{\bar{q}} + p_{g}^{+} - p_{\gamma}^{+}) \int d^{d}\vec{p}_{1}d^{d}\vec{p}_{2}\delta(\vec{p}_{q} + \vec{p}_{\bar{q}} + \vec{p}_{g} - \vec{p}_{\gamma} - \vec{p}_{1} - \vec{p}_{2}) \\ &\times \Phi_{R1}(\vec{p}_{1}, \vec{p}_{2}) C_{F} \left\langle P' \right| \tilde{\mathcal{U}}^{\alpha}(\vec{p}_{1}, \vec{p}_{2}) \left| P \right\rangle \end{aligned}$$

The shockwave formalism 000000000	Dijet production	Vector meson production	GTMD equivalence 00000
Divergences			

Divergences

- Rapidity divergence $p_g^+ \rightarrow 0$ $\Phi_{V2} \Phi_0^* + \Phi_0 \Phi_{V2}^*$
- UV divergence $\vec{p}_g^2 \rightarrow +\infty$ $\Phi_{V1} \Phi_0^* + \Phi_0 \Phi_{V1}^*$
- Soft divergence $p_g \rightarrow 0$ $\Phi_{V1} \Phi_0^* + \Phi_0 \Phi_{V1}^*, \Phi_{R1} \Phi_{R1}^*$
- Collinear divergence $p_g \propto p_q$ or $p_{\bar{q}}$ $\Phi_{R1} \Phi_{R1}^*$

• Soft and collinear divergence $p_g = \frac{p_g^+}{p_q^+} p_q$ or $\frac{p_g^+}{p_q^+} p_{\bar{q}}$, $p_g^+ \to 0$ $\Phi_{R1} \Phi_{R1}^*$

B-JIMWLK evolution of the LO term : $\Phi_0 \otimes \mathcal{K}_{BK}$

The shockwave formalism	Dijet production	Vector meson production	GTMD equivalence
00000000	00000000000000	00000	00000
Rapidity divergence			

B-JIMWLK equation for the dipole operator

$$\begin{split} \frac{\partial \tilde{\mathcal{U}}_{12}^{\alpha}}{\partial \log \alpha} &= 2\alpha_{s} N_{c} \mu^{2-d} \int \frac{d^{d} \vec{k}_{1} d^{d} \vec{k}_{2} d^{d} \vec{k}_{3}}{(2\pi)^{2d}} \delta(\vec{k}_{1} + \vec{k}_{2} + \vec{k}_{3} - \vec{p}_{1} - \vec{p}_{2}) \Big(\tilde{\mathcal{U}}_{13}^{\alpha} \tilde{\mathcal{U}}_{32}^{\alpha} + \tilde{\mathcal{U}}_{13}^{\alpha} + \tilde{\mathcal{U}}_{32}^{\alpha} - \tilde{\mathcal{U}}_{12}^{\alpha} \Big) \\ \times \left[2 \frac{(\vec{k}_{1} - \vec{p}_{1}) \cdot (\vec{k}_{2} - \vec{p}_{2})}{(\vec{k}_{1} - \vec{p}_{1})^{2} (\vec{k}_{2} - \vec{p}_{2})^{2}} + \frac{\pi^{\frac{d}{2}} \Gamma(1 - \frac{d}{2}) \Gamma^{2}(\frac{d}{2})}{\Gamma(d-1)} \left(\frac{\delta(\vec{k}_{2} - \vec{p}_{2})}{\left[(\vec{k}_{1} - \vec{p}_{1})^{2} \right]^{1 - \frac{d}{2}}} + \frac{\delta(\vec{k}_{1} - \vec{p}_{1})}{\left[(\vec{k}_{2} - \vec{p}_{2})^{2} \right]^{1 - \frac{d}{2}}} \right) \right] \end{split}$$

 η rapidity divide, which separates the upper and the lower impact factors

$$\Phi_{0}\tilde{\mathcal{U}}_{12}^{\alpha} \rightarrow \Phi_{0}\tilde{\mathcal{U}}_{12}^{\eta} + 2\log\left(\frac{e^{\eta}}{\alpha}\right)\mathcal{K}_{BK}\Phi_{0}\tilde{\mathcal{W}}_{123}$$

Provides a counterterm to the $log(\alpha)$ divergence in the virtual double dipole

impact factor:

 $\Phi_0 \tilde{\mathcal{U}}_{12}^{lpha} + \Phi_{V2} \tilde{\mathcal{W}}_{123}^{lpha}$ is finite and independent of α

The shockwave formalism	Dijet production	Vector meson production	GTMD equivalence
	00000000000000		
Divergences			

- Rapidity divergence
- UV divergence $\vec{p}_g^2 \rightarrow +\infty$ $\Phi_{V1} \Phi_0^* + \Phi_0 \Phi_{V1}^*$
- Soft divergence $p_g \rightarrow 0$ $\Phi_{V1} \Phi_0^* + \Phi_0 \Phi_{V1}^*, \Phi_{R1} \Phi_{R1}^*$
- Collinear divergence $p_g \propto p_q$ or $p_{\bar{q}}$ $\Phi_{R1} \Phi_{R1}^*$
- Soft and collinear divergence $p_g = \frac{p_g^+}{p_q^+} p_q$ or $\frac{p_g^+}{p_q^+} p_{\bar{q}}$, $p_g^+ \to 0$ $\Phi_{R1} \Phi_{R1}^*$

The shockwave formalism	Dijet production	Vector meson production	GTMD equivalence
00000000	000000000000000	00000	00000
UV divergence			

Dressing of the external lines

Some null diagrams just contribute to turning UV divergences into IR divergences

$$\Phi = 0 \propto \left(\frac{1}{2\epsilon_{IR}} - \frac{1}{2\epsilon_{UV}}\right)$$

The shockwave formalism	Dijet production	Vector meson production	GTMD equivalence
	000000000000000		
Divergences			

- Rapidity divergence
- UV divergence
- Soft divergence $p_g \rightarrow 0$ $\Phi_{V1} \Phi_0^* + \Phi_0 \Phi_{V1}^*, \Phi_{R1} \Phi_{R1}^*$
- Collinear divergence $p_g \propto p_q$ or $p_{\bar{q}}$ $\Phi_{R1} \Phi_{R1}^*$
- Soft and collinear divergence $p_g = \frac{p_g^+}{p_q^+} p_q$ or $\frac{p_g^+}{p_q^+} p_{\bar{q}}$, $p_g^+ \to 0$ $\Phi_{R1} \Phi_{R1}^*$

Soft and collinear divergence				
00000000	00000000000000000	00000	00000	
The shockwave formalism	Dijet production	Vector meson production	GTMD equivalence	

Jet cone algorithm

We define a cone width for each pair of particles with momenta p_i and p_k , rapidity difference ΔY_{ik} and relative azimuthal angle $\Delta \varphi_{ik}$

$$\left(\Delta Y_{ik}\right)^2 + \left(\Delta \varphi_{ik}\right)^2 = R_{ik}^2$$

If $R_{ik}^2 < R^2$, then the two particles together define a single jet of momentum $p_i + p_k$.

Applying this in the small R^2 limit cancels our soft and collinear divergence.

The shockwave formalism	Dijet production	Vector meson production	GTMD equivalence
00000000	0000000000000	00000	00000
Divergences			

- Rapidity divergence
- UV divergence
- Soft divergence $p_g \rightarrow 0$

 $\Phi_{V1}\Phi_0^* + \Phi_0\Phi_{V1}^*, \Phi_{R1}\Phi_{R1}^*$

 $\Phi_{R1}\Phi_{R1}^*$

- Collinear divergence $p_g \propto p_q$ or $p_{\bar{q}}$
- Soft and collinear divergence

The remaining divergences cancel the standard way: virtual corrections and real corrections cancel each other

Vector meson production

Exclusive production of a forward light neutral vector meson

[RB, Grabovsky, Ivanov, Szymanowski, Wallon] Phys.Rev.Lett. 119 (2017) ; arXiv:1612.08026 The shockwave formalism 000000000

Dijet production

Vector meson production

GTMD equivalence 00000

s-channel collinear factorization

Twist 2: ρ_L production

Singlet transition \Rightarrow only virtual diagrams contribute. Leading twist matrix element:

$$\left\langle \rho_{L}\left(p\right)\left|\bar{\psi}\left(z\right)\gamma^{\lambda}\psi\left(0\right)\right|0
ight
angle \ o \ f_{\rho}m_{\rho}p^{\lambda}\int_{0}^{1}dx\ e^{-ixp\cdot z}\varphi_{\parallel}\left(x
ight)$$

Vector meson production

Exclusive diffractive production of a light neutral vector meson

$$\begin{split} \mathsf{I}_{0} &= -\frac{\mathsf{e}_{V} f_{V} \varepsilon_{\beta}}{N_{c}} \int_{0}^{1} dx \varphi_{\parallel} \left(x \right) \int \frac{d^{d} \vec{p}_{1}}{\left(2\pi \right)^{d}} \frac{d^{d} \vec{p}_{2}}{\left(2\pi \right)^{d}} \\ &\times \quad \left(2\pi \right)^{d+1} \delta \left(p_{V}^{+} - p_{\gamma}^{+} \right) \delta \left(\vec{p}_{V} - \vec{p}_{\gamma} - \vec{p}_{1} - \vec{p}_{2} \right) \\ &\times \quad \Phi_{0}^{\beta} \left(x, \ \vec{p}_{1}, \ \vec{p}_{2} \right) \widetilde{\mathcal{U}}_{12}^{\eta}. \end{split}$$

Leading twist for a longitudinally polarized meson Otherwise general kinematics, including transverse virtual photon (twist 3) contributions, and the photoproduction limit (for large t-channel momentum transfer)

The shockwave formalism 000000000	Dijet production	Vector meson production	GTMD equivalence 00000
ERBL evolution equation	tion		

Efremov, Radyushkin, Brodsky, Lepage evolution equation for a DA

Renormalization of the bilocal operator

 $\bar{\psi}(z)\gamma^{\mu}\psi(0)$

 \Rightarrow Evolution equation for the distribution amplitude in the $\overline{\textit{MS}}$ scheme

$$\frac{\partial \varphi(x,\mu_F^2)}{\partial \ln \mu_F^2} = \frac{\alpha_s C_F}{2\pi} \frac{\Gamma(1-\epsilon)}{(4\pi)^{\epsilon}} \left(\frac{\mu_F^2}{\mu^2}\right)^{\epsilon} \int_0^1 dz \varphi(z,\mu_F^2) \mathcal{K}(x,z),$$

 $\mathcal{K} = \mathsf{ERBL} \; \mathsf{kernel}$

The shockwave formalism	Dijet production	Vector meson production	GTMD equivalence
		00000	
ERBL evolution equat	tion		

Evolution equation for the distribution amplitude in the \overline{MS} scheme

$$\frac{\partial \varphi(x,\mu_F^2)}{\partial \ln \mu_F^2} = \frac{\alpha_s C_F}{2\pi} \frac{\Gamma(1-\epsilon)}{(4\pi)^{\epsilon}} \left(\frac{\mu_F^2}{\mu^2}\right)^{\epsilon} \int_0^1 dz \varphi(z,\mu_F^2) \mathcal{K}(x,z),$$

where we parameterize the ERBL kernel for consistency as

$$\mathcal{K}(x, z) = \frac{x}{z} \left[1 + \frac{1}{z - x} \right] \theta(z - x - \alpha)$$

+
$$\frac{1 - x}{1 - z} \left[1 + \frac{1}{x - z} \right] \theta(x - z - \alpha)$$

+
$$\left[\frac{3}{2} - \ln \left(\frac{x(1 - x)}{\alpha^2} \right) \right] \delta(z - x).$$

It is equivalent to the usual ERBL kernel

It provides the right counterterm to obtain a finite amplitude

Quick remarks on the equivalence with standard parton distributions

The shockwave formalism 000000000 Dijet production

Vector meson production

GTMD equivalence

Exclusive low x cross section

Exclusive low x amplitude = GTMD amplitude: LO [Altinoluk, RB]

Exclusive low x cross section				
00000000	0000000000000000	00000	00000	
The shockwave formalism	Dijet production	Vector meson production	GTMD equivalence	

Exclusive low x amplitude = GTMD amplitude: NLO? [RB, Mehtar Tani?]

The shockwave formalism Dijet production	on vector mesor	production GTMD equivalence
Common tools		

From the low x/TMD equivalence:

- Target Sudakov log resummation for small x processes [Mueller, Xiao, Yuan], [Xiao, Yuan, Zhou]
- Phenomenological Sudakov log simulation [Kotko, Kutak, Sapeta, Stasto, Strikman], [Van Hameren, Kotko, Kutak, Sapeta]
- TMD evolution could be one way of fixing the negativity issues for low x cross sections at NLO
- A full reinterpretation of the multiple scattering effects in the so-called saturation regime [Altinoluk, RB]
- A better understanding of the importance of linearly polarized gluon distributions at small x [See D. Boër and V.Skokov's talk]
 - In particular, any small x observable has maximally polarized gluon distributions at large kt [Altinoluk, RB]

The shockwave formalism 000000000	Dijet production 000000000000	Vector meson production	GTMD equivalence 0000●
Conclusion			

- We provided the full computation of the impact factor for the exclusive diffractive production of a dijet and of a light neutral vector meson with NLO accuracy in the shockwave approach
- These processes both constrain gluon Wigner distributions
- Our results are thus perfectly suited for precision saturation physics and gluon tomography at the EIC

Backup

Soft real emission

$$\left(\Phi_{R1}\Phi_{R1}^*
ight)_{soft}\propto \left(\Phi_0\Phi_0^*
ight)\int_{ ext{outside the cones}}\left|rac{p_q^\mu}{(p_q.p_g)}-rac{p_{ar q}^\mu}{(p_{ar q}.p_g)}
ight|^2rac{dp_g^+}{p_g^+}rac{d^dp_g}{(2\pi)^d}$$

Collinear real emission

$$\left(\Phi_{\text{R1}}\Phi_{\text{R1}}^{*}
ight)_{\text{col}}\propto\left(\Phi_{0}\Phi_{0}^{*}
ight)\left(\mathcal{N}_{q}+\mathcal{N}_{ar{q}}
ight)$$

Where $\ensuremath{\mathcal{N}}$ is the number of jets in the quark or the antiquark

$$\mathcal{N}_{k} = \frac{(4\pi)^{\frac{d}{2}}}{\Gamma(2-\frac{d}{2})} \int_{\alpha p_{\gamma}^{+}}^{p_{jet}^{+}} \frac{dp_{g}^{+}dp_{k}^{+}}{2p_{g}^{+}2p_{k}^{+}} \int_{\mathrm{in \ cone \ k}} \frac{d^{d}\vec{p}_{g}d^{d}\vec{p}_{k}}{(2\pi)^{d}\mu^{d-2}} \frac{\mathrm{Tr}\left(\hat{p}_{k}\gamma^{\mu}\hat{p}_{jet}\gamma^{\nu}\right)d_{\mu\nu}(p_{g})}{2p_{jet}^{+}\left(p_{k}^{-}+p_{g}^{-}-p_{jet}^{-}\right)^{2}}$$

Those two contributions cancel exactly the virtual divergences

Total divergence

$$(d\sigma_1)_{div} = \alpha_s \frac{\Gamma(1-\varepsilon)}{(4\pi)^{1+\varepsilon}} \left(\frac{N_c^2-1}{2N_c}\right) (S_V + S_V^* + S_R + \mathcal{N}_{jet1} + \mathcal{N}_{jet2}) d\sigma_0$$

Virtual contribution

$$S_{V} = \left[2\ln\left(\frac{x_{j}x_{j}^{2}}{\alpha^{2}}\right) - 3\right] \left[\ln\left(\frac{x_{j}x_{j}^{2}\mu^{2}}{(x_{j}\vec{p}_{j}^{2} - x_{j}\vec{p}_{j})^{2}}\right) - \frac{1}{\epsilon}\right] + 2i\pi\ln\left(\frac{x_{j}x_{j}^{2}}{\alpha^{2}}\right) + \ln^{2}\left(\frac{x_{j}x_{j}}{\alpha^{2}}\right) - \frac{\pi^{2}}{3} + 6$$

Real contribution

$$\begin{split} S_{R} + \mathcal{N}_{jet1} + \mathcal{N}_{jet2} &= 2 \left[\ln \left(\frac{(x_{j}\bar{p}_{j}^{-} - x_{j}\bar{p}_{j}^{-1})}{x_{j}^{2}x_{j}^{2}R^{4}\bar{p}_{j}^{-2}\bar{p}_{j}^{-2}} \right) \ln \left(\frac{4E^{2}}{x_{j}x_{j}(p_{\gamma}^{+})^{2}} \right) \\ &+ 2 \ln \left(\frac{x_{j}x_{j}}{\alpha^{2}} \right) \left(\frac{1}{\epsilon} - \ln \left(\frac{x_{j}x_{j}\mu^{2}}{(x_{j}\bar{p}_{j}^{-} - x_{j}\bar{p}_{j}^{-2})} \right) \right) - \ln^{2} \left(\frac{x_{j}x_{j}}{\alpha^{2}} \right) \\ &+ \frac{3}{2} \ln \left(\frac{16\mu^{4}}{R^{4}\bar{p}_{j}^{-2}\bar{p}_{j}^{-2}} \right) - \ln \left(\frac{x_{j}}{x_{j}} \right) \ln \left(\frac{x_{j}\bar{p}_{j}^{-2}}{x_{j}\bar{p}_{j}^{-2}} \right) - \frac{3}{\epsilon} - \frac{2\pi^{2}}{3} + 7 \right] \end{split}$$

Total "divergence"

$$div = S_V + S_V^* + S_R + \mathcal{N}_{jet1} + \mathcal{N}_{jet2}$$

$$= 4 \left[\frac{1}{2} \ln \left(\frac{(x_{j} \vec{p}_{j} - x_{j} \vec{p}_{j})^{4}}{x_{j}^{2} x_{j}^{2} R^{4} \vec{p}_{j}^{-2} \vec{p}_{j}^{-2}} \right) \left(\ln \left(\frac{4E^{2}}{x_{j} x_{j} (p_{\gamma}^{+})^{2}} \right) + \frac{3}{2} \right) \right. \\ \left. + \ln \left(8 \right) - \frac{1}{2} \ln \left(\frac{x_{j}}{x_{j}} \right) \ln \left(\frac{x_{j} \vec{p}_{j}^{-2}}{x_{j}^{2} \vec{p}_{j}^{-2}} \right) + \frac{13 - \pi^{2}}{2} \right]$$

Our cross section is thus finite

The dilute limit in terms of TMD distributions

Two kinds of multiple scattering effects: higher genuine twists and higher kinematic twists

Inclusive low x cross section

Inclusive low x cross section = TMD cross section [Altinoluk, RB, Kotko], [Altinoluk, RB]

$$\begin{split} \sigma &= \mathcal{H}_{2}^{ij}\left(\mathbf{k}_{\perp}\right) \otimes \left\langle P \left| F^{-i}WF^{-j}W \right| P \right\rangle \\ &+ \mathcal{H}_{3}^{ijk}\left(\mathbf{k}_{\perp}, \mathbf{k}_{1\perp}\right) \otimes \left\langle P \left| F^{-i}Wg_{s}F^{-j}WF^{-k}W \right| P \right\rangle \\ &+ \mathcal{H}_{4}^{ijkl}\left(\mathbf{k}_{\perp}, \mathbf{k}_{1\perp}, \mathbf{k}_{1\perp}'\right) \otimes \left\langle P \left| F^{-i}Wg_{s}F^{-j}Wg_{s}F^{-k}WF^{-l}W \right| P \right\rangle \end{split}$$