

Topics in QCD from DSEs

Richard Williams

2019 EIC User Group Meeting

University of Giessen

22-26 Jul. 2019, Paris, France

Motivation

Extract properties of hadrons from QCD

- Propagators and vertices
- Formulate description of bound-states in the continuum.

Test truncations against Hadronic Spectrum

• Include/Exclude interaction terms

Interaction terms responsible for

- Binding quarks and (anti)quarks
- Unquenching effects
- Decay channels
- Splitting between parity partners ...

Extract from Green's functions

Hadronic States

Bound-states
$$\leftrightarrow$$
 Poles \overleftarrow{G} \overrightarrow{G} \overrightarrow{G}

Lattice:

Construct gauge-invariant current correlators

$$e^{-mt} \iff \frac{1}{p^2 + m^2}$$

Exponential time-decay.

BSE:

 $\Psi^{\lambda}_{\alpha\beta\gamma} = \langle 0 | T\psi_{\alpha}\psi_{\beta}\psi_{\gamma} | \lambda \rangle$

Spectral decomposition.

BS wavefunction

Hadronic States

Solution (on-shell) yields Bethe-Salpeter equation

• **Dressed** particle constituents: Green's functions

Dyson-Schwinger equations (DSE)

Provide dressed propagators (and in turn, vertices)

Dressed quantities means:

- Mass function runs
- Coupling runs
- Vertices run
- i.e. everything runs!

Difficult to disentangle in detail

Bethe-Salpeter Equations (BSE)

Infinite tower of coupled Green's functions to consider ... truncation

Expose corrections to the Bethe-Salpeter kernel

- Systematic and improvable
- Lead to meaningful inclusion of "physics"
- Preserve axial-vector Ward-Takahashi identity

BSE – Rainbow-Ladder

2PI 2-loop (rainbow-ladder)

Euclidean space:

• Time-like properties require analytic continuation of propagators/vertices into the complex plane.

Routinely solved by "standard methods"

- Quark for complex momenta (Cauchy, shell-method, path deformation)
- One-loop BSE kernel independent of total momentum *P*

• Gluon model

[Maris, Tandy PRC 60 (1999) 055214]

BSE – Beyond Rainbow-Ladder

[RW, Fischer, Heupel, PRD93 (2016)]

BSE – Beyond Rainbow-Ladder

Yields **closed system of equations** for the dressed propagators and vertices that enter the Bethe-Salpeter kernel K.

- Seventeen coupled integral equations.
- More for N > 2 quarks.

[RW, Fischer, Heupel, PRD93 (2016)] [M. Q. Huber, EPJC77 (2017)]

Mesons: Charmonium, Rainbow-Ladder

Mesons: Light, Rainbow-Ladder

Mesons: light, beyond Rainbow-Ladder

But something is missing

- Bound states **below** strong decay threshold: π , K, D, B
- Most hadrons lie **above** strong decay threshold

[RW, Fischer, Heupel, PRD93 (2016)][Chang, Roberts, PRL 103 (2009)][Chang, Roberts, PRC 85 (2012)]

Resonances

Minimally: extend rainbow-ladder by including decay channel

Specifically:

[RW, arXiv:1804.11161]

- Two-pion decay kernel
- **Couples** to *e.g.* vector and scalar mesons.
- Does not couple to pseudoscalar (CP and P): *maintains chiral symmetry*

Technical step:

Integrating over intermediate states

[Watson, Cassing, FBS 35 (2004)] [Fischer, Nickel, Wambach, PRD 76 (2007)] [Fischer, RW, PRD 78 (2008)]

Resonances

Intermediate bound-state poles are integrated over; sweep out cuts in integration plane

Two-pion cuts

$$l_{\rm cut}^2 = -z\sqrt{t} + \sqrt{t(z^2 - 1) - m_\pi^2}, \qquad t = P^2/4$$

Below threshold

No obstruction

 Integrate along spacelike axis without problem.

Path deformation required

• Avoid cut(s) during integration.

Resonances: without decay channel

Pole readily apparent on the real-axis

Resonances: with decay channel

Poles on the "unphysical" sheet

Resonances

Here: strong coupling constant $g_{\rho\pi\pi} \sim 5.7$ (experimental value $g_{\rho\pi\pi} \sim 6.0$)

RL: (impulse approximation) $g_{\rho\pi\pi} \sim 5.2$

$$\Gamma_R = \frac{p^3}{M_R^2} \frac{g_{\rho\pi\pi}^2}{6\pi}, \quad p = \sqrt{M_R^2/4 - m_\pi^2} ,$$

[Jarecke, Maris, Tandy, PRC67 (2003)] [Mader, Eichmann, Blank, Krassnigg, PRD84 (2011)]

Outlook: finite-temperature

Quenched propagator from Lattice

Unquenching via 3PI

Depends explicitly on: T, μ, m

Outlook: finite-temperature

Vertices have been calculated

Outlook: high-spin Baryon

First Rainbow-Ladder – then extend beyond:

Summary

Main Goals

- one framework
 - Mesons, Baryons, Tetraquarks, Hybrids, Glueballs
 - Electromagnetic form factors, Anomalous magnetic moments
- DCSB, confinement

Main Challenges

- Control of systematic errors:
 - Intrinsic and by comparison to other methods

Main Results

- nPI is a powerful tool
- Not high precision, but quantitative and -- where not -- qualitative.
- Competitive contributions in many wide areas

Review

Eichmann, Sanchis-Alepuz, RW, Alkofer, Fischer 1606.9602 PPNP. 91 (2017) 1-100

Summary

Main Goals

M ons, Bar
El tromagi
DCSB, onfine

Main Challenges

- Control of systematic errors:
 - Intrinsic and by comparison to other methods

Main Results

- nPl is a powerful tool
- Not high precision, but quantitative and -- where not -- qualitative.

omal

Competitive contributions in many wide areas

Review

Eichmann, Sanchis-Alepuz, RW, Alkofer, Fischer 1606.9602 PPNP. 91 (2017) 1-100

