
Nuclear effects on jets at the EIC

Edmond Iancu
IPhT Saclay & CNRS

January 31, 2018

EICUG, Paris, July 2019 Nuclear effects on jets at the EIC Edmond Iancu 1 / 39



Outline

The main focus

nuclear effects on jet production at the EIC, in the light of our lessons
from RHIC and the LHC

A brief overview of (particularly insightful) experimental results

their common denominator: the physics of high parton densities

Multiple scattering in a dense partonic system

transverse momentum broadening in a quark gluon plasma

pT -broadening in a large nucleus & its relation to gluon saturation

pT -broadening in eA collisions: what is new as compared to pA ?

Medium-induced radiation and energy loss

the most distinguished nuclear effect on jets in heavy ion collisions
deeply related to the transverse momentum broadening
what a kind of (medium-induced) energy loss can we expect at the EIC?
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Nuclear modification factor for hadrons at RHIC

Au+Au, d+Au, and p+p collisions at RHIC with
√
sNN = 200 GeV

dense-dense (AA), dilute-dense (pA), dilute-dilute (pp)

Ratio of particle yield in AA (or pA) and pp scaled by # of binary collisions
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would be 1 in the absence of collective
nuclear effects

data by STAR, nucl-ex/0501009

midrapidities (η ∼ 0), minimum bias

2 types of nuclear effects
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Au+Au, d+Au, and p+p collisions at RHIC with
√
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d+Au: Cronin peak

multiple scattering in the
Cold Nuclear Matter

Au+Au: suppression at all pT ’s

partonic energy loss in the
Quark Gluon Plasma (“jet quenching”)

Both phenomena reflect the physics of dense partonic systems
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Nuclear modification factor for hadrons at the LHC

Pb+Pb collisions: jet quenching still present and even stronger

central collisions (head-on Pb+Pb scattering) look denser
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p+Pb collisions: RpA is consistent with 1 within the error bars

“no jet quenching in pA collisions”
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Energy loss

Hadrons measured with a given energy E have been produced with E + ε
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P(ε): probability density for losing ε

dσvac(E)
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∝ 1

En
, n = 7÷ 10

Rapidly falling spectrum for the hard process

Bias towards small values for ε

Even a small ε may imply strong suppression
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What about real jets ?

LHC: the jet yield in Pb+Pb collisions normalized by p+p times the average
nuclear thickness function 〈TAA〉

RAA ≡
1

Nevt

d2Njet

dpT dy

∣∣∣
AA

〈TAA〉 d
2σjet

dpT dy

∣∣∣
pp

ATLAS, arXiv:1805.05635

stronger suppression for more
central collisions

Energy loss by the jet: transported at large angles θ > R

RAA is almost flat at very high pT : energy loss increases with pT
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Jet quenching

Jets: collimated spray of particles generated via successive parton branchings
followed by hadronisation

The leading partons are generally created in pairs, by a hard process, and
propagate back-to-back in the transverse plane

AA collisions: the jets are created within a dense partonic medium and can
be modified by the latter: “jet quenching”
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LHC: Di-jets in p+p collisions
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“Mono-jets” in Pb+Pb collisions

Central Pb+Pb: ‘mono–jet’ events

The secondary jet can barely be distinguished from the
background: ET1 ≥ 100 GeV, ET2 > 25 GeV

This phenomenon was a real surprise: never predicted
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Di–jet asymmetry at the LHC

The missing energy is found in the underlying event:

many soft (p⊥ < 2 GeV) hadrons propagating at large angles

Very different from the usual jet fragmentation pattern in the vacuum

Suggests a new mechanism for parton radiation, specific to medium
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Medium-induced jet evolution

The leading particle is produced by a hard scattering

It subsequently evolves via radiation (branchings) ...

... and via collisions off the medium constituents
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Medium-induced jet evolution

The leading particle is produced by a hard scattering

It subsequently evolves via radiation (branchings) ...

... and via collisions off the medium constituents

Collisions can have several effects

transfer energy and momentum between the jet and the medium

trigger additional radiation (“medium-induced”)

wash out the color coherence (destroy interference pattern)
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pT -broadening in AA collisions

Weakly coupled QGP: an energetic quark acquires a transverse momentum
p⊥ via independent successive collisions, after propagating over a distance L

A random walk in transverse momentum: 〈p2⊥〉 ' q̂L

q̂hot =

∫ Q2

d2k
dΓel

d2k
k2 ' 4πα2

sCF ρhot ln
Q2

m2
D

ρhot = CFnq +Ncng ∼ T 3: density of the thermal quarks & gluons
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pT -broadening in AA collisions

Weakly coupled QGP: an energetic quark acquires a transverse momentum
p⊥ via independent successive collisions, after propagating over a distance L

A random walk in transverse momentum: 〈p2⊥〉 ' q̂L

q̂hot =

∫ Q2

d2k
dΓel

d2k
k2 ' 4πα2

sCF ρhot ln
Q2

m2
D

Typical values: q̂ = 1÷ 2 GeV2/fm, L = 4÷ 6 fm, 〈p2⊥〉 = 4÷ 12 GeV2
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pT -broadening in pA collisions (1)

A quark (or gluon) initially collinear with the proton acquires a transverse
momentum p⊥ via multiple scattering off the saturated gluons

p

x

η = − ln tan
θ

2

xp ≡
p+

q+
=
p⊥√
s

eη

xg ≡
p−

P−
=
p⊥√
s

e−η

η ' 0 and RHIC kinematics: xp ' xg ' 10−2

η ' 3 (“forward rapidity”): xp ' 0.2, xg ' 5× 10−4

Forward particle production probes the nuclear gluon distribution at small xg
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pT -broadening in pA collisions (2)

Multiple scattering in the eikonal approximation: Wilson lines

dσ

dηd2k⊥
' xpq(xp)

∫
x,y

e−i(x−y)·k
1

Nc

〈
tr
(
VxV

†
y

)〉
xg

An unintegrated gluon distribution: “dipole TMD”

Target average computed within the CGC

BK-JIMWLK evolution with decreasing xg (increasing η)
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pT -broadening in pA collisions (3)

η ∼ 0: no evolution =⇒ scattering off the valence quarks (“MV model”)

dN

dηd2p⊥
' 1

πQ2
s

e−p
2
⊥/Q

2
s , Q2

s ≡ q̂L, L = 2RA
M

P

q̂cold =
4π2αsCF
N2
c − 1

ρcold xGN (x,Q2
s) ∼ α2

sCF ρcold ln
Q2
s

Λ2

Similar to QGP, except that ρcold (the nucleon density) is smaller than ρhot

Typical value: Q2
s(A, xg ∼ 10−2) ∼ 1 GeV (from fits to d+Au at RHIC)

This can explain the Cronin peak at mid-rapidity in RpA at RHIC

(Kovchegov, Tuchin, 2003; E. I., Itakura, Triantafyllopoulos, 2004)

Large η & 3: rapid increase of the gluon density via BK-JIMWLK evolution

Q2
s(x,A) ∼ A1/3

xλs
, λs = 0.20÷ 0.25
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The saturation momentum

Non-linear evolution of the gluon distribution with increasing Y ≡ ln(1/x).

presently known to next-to-leading order accuracy

It stops when the occupation number becomes of order 1/αs: saturation

ln !

Y = ln 1/x

2
QCD

Saturation
= " Y

ln Q2

Dilute system

DGLAP

JIMWLK

sln Q  (Y)2
s

For A = 200 and x = 10−4, one has Q2
s ' 6 GeV2 (quark projectile)

pT broadening in pA or eA becomes as strong as in AA
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Di-hadron azimuthal correlations

Distribution of pairs of particles w.r.t. the relative azimuthal angle ∆Φ

peak at ∆Φ ∼ 0: both hadrons belong to a same jet

peak at ∆Φ ∼ π: they belong to two back-to-back jets
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RHIC: 4 < pT,trig < 6 GeV, mid-rapidity (η ∼ 0)

Au+Au: no peak at ∆Φ ∼ π: pT -broadening in the QGP
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Di-hadrons at forward rapidities
k !

k !22

11
k

k
2

2

11

The scattering transfers an overall momentum |k1 + k2| ' Qs(xg)

Predicted by the CGC (Marquet, 2007; Albacete and Marquet, 2010)
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Forward di-hadrons in pA collisions
(Marquet, NPA796, 2007; Dominquez, Marquet, Xiao, Yuan, PRD83, 2011)

The collinear quark radiates a gluon prior to, or after, the scattering

4 Wilson lines in the cross-section: color quadrupole 1
Nc

〈
tr(V †x1

Vx2
V †x3

Vx4
)
〉

Generalization of Weiszäcker-Williams gluon TMD (occupation number)

Reduces to the latter in the “correlation” limit k1⊥ ' k2⊥ � |k1 + k2|

the 2 hadrons are nearly back-to-back and harder than Qs

Saturation effects still important: the broadening of the peak at ∆Φ = π
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Forward di-hadrons: the state of art (1)
(Albacete, Giacalone, Marquet, and Matas, arXiv:1805.05711)

Reasonable description of the away peaks in both p+p and d+Au at RHIC

The broadening predictions still too small, since no Sudakov effects yet
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Forward di-hadrons: the state of art (2)
(Zheng, Aschenauer, Lee, and Xiao, arXiv:1403.2413)

A calculation illustrating the effect of the Sudakov factor (radiation)

This applies to DIS (eA and ep), but physics is indeed very similar
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pT -broadening in eA collisions
2 kinematical regimes: large x and small x (coherence time vs. L = 2RA/γ)

To study nuclear effects, one clearly needs x as small as possible

high gluon density, maximal in-medium path length

tcoh =
2q0
Q2

> L = 2RA
MN

PN
=⇒ x ≡ Q2

2P · q
. 0.01

Assume maximal energy Ee = 20 GeV, EN = 100 GeV

=⇒ Q2 < 0.01ys = 80y ∼ 40 GeV2 when y = 0.5

N.B. q and q̄ have an intrinsic k2⊥ ∼ 1/r2 ' z(1− z)Q2 . 10 GeV2
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Forward jets/dijets in eA collisions

In the Lab frame, γ = 100 ⇒ the dipole scatters of a shockwave

If z ∼ 1− z ∼ 1/2 =⇒ two mostly forward jets

Longitudinal momenta (k+1 = zq+, k+2 = (1−z)q+) are not affected

Transverse momenta receive contributions from the scattering (transfer

from the target) on top of the intrinsic momenta in the γ∗ wavefunction

Eikonal approximation: convenient to use transverse coordinate repres.
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Forward single jet
(Al Mueller, Nucl.Phys. B558, 1999; see also Al’s talk this morning)

It is convenient to tag on a jet, or leading parton, with z ∼ 1

Large dipole: r2 ' 1
(1−z)Q2 � 1

Q2 =⇒ sensitivity to saturation even for a

relatively hard process: Q2
s ∼ (1− z)Q2 � Q2, k21⊥

A simple calculation suggests geometric scaling, like in DIS at HERA:

dN

dηd2k⊥
∝
(
Q2
s(x)

k2⊥

)γs
, γs ' 0.63
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Azimuthal asymmetries in dijets (1)
(Dominquez, Marquet, Xiao, Yuan, PRD83, 2011)

2 jets which are nearly back-to-back, in the correlation limit P⊥ � q⊥

P⊥ ≡ (1− z)k1⊥ − zk2⊥ (relative pT ), q⊥ ≡ k1⊥ + k2⊥ (imbalance)

P 2
⊥ ∼ z(1− z)Q2 controlled by the γ∗ decay; q⊥ ∼ Qs by saturation

Access to the “conventional” WW gluon TMD xG(1)(x, q⊥)

measure the suppression of the back-to-back correlation, as in pA
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Azimuthal asymmetries in dijets (2)
(Metz, Zhou, 1105.1991; Dumitru, Lappi, Skokov, 1508.04438;
Marquet, Petreska, Roiesnel, 1608.02577; Dumitru, Skokov, Ullrich, 1809.02615)

One can also measure the linearly polarized WW gluon TMD xh
(1)
⊥ (x, q⊥)

distribution of linearly polarized gluons inside an unpolarized nucleon

Proportional to the azimuthal anisotropy in the angle φ between P⊥ and q⊥

〈cos 2φ〉 ∝
xh

(1)
⊥ (x, q⊥)

xG(1)(x, q⊥)

Monte-Carlo generator MCDijet using JIMWLK solutions for WW TMDs
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What about energy loss ?

Recall: the main mechanism for jet quenching in AA collisions is energy loss
via medium-induced radiation

Such emissions have a limited formation time, hence a limited energy

tf =
2ω

k2⊥
≤ L

k2⊥ ∼ Q2
s = q̂L

=⇒ ω ≤ ωc ≡
1

2
Q2
sL

... which is however quite high: ωc ' 60 GeV

LHC found strong jet quenching for jets with pT = 1 TeV

eA at EIC: the electron has ERF
e = 4 TeV in the target rest frame

The target is dense at small x: Q2
s(x)RA & 50 GeV for x < 10−3
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Some lessons from RAA for jets (LHC)
(Caucal, E.I., Mueller, Soyez, PRL120 (2018); Caucal, E.I., Soyez, 1907.04866)

What matters for jets is the typical energy loss at large angles

For a single parton, this saturates at a value α2
sωc ∼ 10 GeV

The number of partons in a jet increases with pT , via vacuum-like emissions
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This explains why RAA rises so slowly with pT as seen in the data.
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If one excludes vacuum-like emissions, RAA rises much faster at high pT .
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Coherent energy loss in eA

AA: jets are created as highly virtual, bare, partons in the medium RF

they radiate thus creating new partons =⇒ more sources for energy loss

eA: the qq̄ pair are asymptotic (nearly on-shell) partons

they fragment only after the scattering and far away from it

in-medium energy loss is negligible: α2
sQ

2
sL� ERF

e = s/2M

Yet, there is another possible mechanism for medium induced energy loss

q and q̄ develop space-like quanta that can be freed by the collision

“(fully) coherent energy loss” (Arleo, Peigné, PRL 109, 2012)

used as an interpretation for J/ψ suppression in d+Au at RHIC

CGC calculation for di-jets in pA (Liou, Mueller, PRD89, 2014)
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Coherent energy loss for di-jets in eA

Consider the production of a pair of heavy flavors (MQ), or a pair of light
quarks, but with high P⊥: M2

⊥ ≡M2
Q + P 2

⊥ � Q2
s(x)

A gluon w/ energy ω can be emitted long before, or long after, the scattering

large formation time tf = 2ω
k2⊥

=⇒ large ω (restricted only by q+)

For initial-state emissions in both the DA and the CCA, the scattering of the
gluon does not matter: it cancels out by unitarity.

same result as for ep =⇒ no net nuclear effect
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Coherent energy loss for di-jets in eA

Consider the production of a pair of heavy flavors (MQ), or a pair of light
quarks, but with high P⊥: M2

⊥ ≡M2
Q + P 2

⊥ � Q2
s(x)

A gluon w/ energy ω can be emitted long before, or long after, the scattering

large formation time tf = 2ω
k2⊥

=⇒ large ω (restricted only by q+)

For the interference terms though (IS/FS or FS/IS), it does not cancel !

the gluon is typically soft, k⊥ ∼ Qs, hence it is sensitive to saturation

net nuclear energy loss, which scales with the total energy: ∆E ∝ E
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Conclusions

The nuclear physics at the EIC (in particular in relation with jets) is even
more interesting than I thought !

The role of the quark-gluon plasma is taken over by the gluon saturation

Bulk observables are replaced by subtle, interference, phenomena

Leading-order (tree-level) physics is not sufficient anymore: quantum
evolution is already essential in order to create the medium (CGC)

Many fine observables, that can be accurately measured and computed

Many surprises to come, but we should do our best to anticipate them!

THANK YOU FOR YOUR ATTENTION !
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Jets in practice

Experimentally, jets are constructed by grouping together hadrons which
propagate at nearby angles θ < θ0 ≡ R

The jet opening angle θ0 (or R) is the same for both jets

Medium modifications refer both to the jets and to the outer regions
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Jets in peripheral Pb+Pb collisions

Jets in peripheral AA collisions look very much like in pp collisions
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Di-jet asymmetry: AJ
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(f)

Event fraction as a function of the di–jet energy imbalance in p+p (a) and
Pb+Pb (b–f) collisions for different bins of centrality

N.B. A pronounced asymmetry already in p+p collisions !

3-jets events, fluctuations in the branching process

Central Pb+Pb : the asymmetric events occur more often
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Di-jet asymmetry: ∆φ distribution
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No significant angular decorrelation beyond pp collisions

The angular distribution shows a large width already in pp collisions

Why? Recoil due to standard gluon radiation after a hard scattering
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Sudakov vs. medium-induced pT -broadening
Mueller, Wu, Xiao, Yuan, PLB 763 (2016); Chen et al, arXiv:1607.01932

“Sudakov effect”: the effects of the radiation are visible since the
measurements is non-inclusive (one measures an angular correlation)

incomplete cancellation between “real” and “virtual” corrections

effect ∼ αs ln2(p2T /Q
2
s): the phase-space for radiation at Qs < ω < pT

medium-induced pT -broadening has no effect for dijets at the LHC

at RHIC, there seems to be a small but measurable effect
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RpA for high-multiplicity events: jet quenching?

Events divided in “centrality classes” reflecting the “event activity”

forward (or central) particle multiplicity, forward transverse energy...
the correlation with the collision geometry remains obscure
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RpA for high-multiplicity events: jet quenching?

Nuclear effects reported by PHENIX and ATLAS for both “central” and
“peripheral” events (@ forward rapidity, in the proton direction)

(PHENIX: Phys.Rev.Lett. 116, 2016; ATLAS: Phys.Lett.B 748, 2015)
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RpA for high-multiplicity events: jet quenching?

ALICE, arXiv:1712.05603

However, not seen by ALICE: use semi-inclusive observables

the correlation between 〈TpPb〉 and the event activity is subjected to
uncertainties (large fluctuations, bias from energy conservation ...)
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RpA for high-multiplicity events: jet quenching?

ALICE, arXiv:1712.05603

An energy loss as small as ε = 0.4 GeV could have been observed!
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Forward rapidities: RpA suppression
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The Cronin peak disappears already after one unit of rapidity ! Why ?

RpA is the ratio of 2 “dipole” TMDs: for the nucleus and for the proton

With increasing η, the gluon distribution in the proton rises faster (via the
BK-JIMWLK evolution) than that in the nucleus

growth driven by BFKL dynamics in the dilute tail at p⊥ > Qs

the logarithmic phase-space ρ = ln(p2⊥/Q
2
s) is larger for the proton

than for the nucleus, since Qs(p) < Qs(A)
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Nuclear effects on the jet substructure

The internal structure of the jet, at angles θ < R, is strongly modified as well
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=
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enhancement at small z ≡ pT /pjetT
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Naturally interpreted as a combination of energy loss and additional, soft,
medium-induced radiation
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