3D Nucleon Imaging

Paweł Sznajder National Centre for Nuclear Research, Poland

EICUG meeting, Paris, July 22, 2019

- Introduction
- Experimental campaign
- Global analysis of DVCS data "classic" and ANN approaches
- Summary

Deeply Virtual Compton Scattering (DVCS)

factorization for $|t|/Q^2 \ll 1$

Chiral-even GPDs: (helicity of parton conserved)

$H^{q,g}(x,\xi,t)$	$E^{q,g}(x,\xi,t)$	for sum over parton helicities
$\widetilde{H}^{q,g}(x,\xi,t)$	$\widetilde{E}^{q,g}(x,\xi,t)$	for difference over parton helicities
nucleon helicity conserved	nucleon helicity changed	

Nucleon tomography

$$q(x, \mathbf{b}_{\perp}) = \int \frac{\mathrm{d}^2 \mathbf{\Delta}}{4\pi^2} e^{-i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}} H^q(x, 0, t = -\mathbf{\Delta}^2)$$

Total angular momentum

$$\frac{A^{q}(0)}{EMT \text{ form factors}} = \int_{-1}^{1} x \left[H^{q}(x,\xi,0) + E^{q}(x,\xi,0) \right] = 2J^{q}$$

$$J^{'}_{I's \text{ sum rule}}$$

"Mechanical" forces acting on quarks, e.g. pressure in nucleon center

$$p(0) = \frac{1}{6\pi^2 M} \int_{-\infty}^{0} dt \sqrt{-ttC(t)}$$
Nucleon mass EMT form factor

GPDs studied in various laboratories \rightarrow need to cover a broad kinematic range

experiments

closed active planned

Paweł Sznajder / 3D nucleon imaging / July 22, 2019

DVCS data

Kinematic cuts used in presented analyses:

$$Q^2 > 1.5 \text{ GeV}^2$$

 $-t/Q^2 < 0.2$

No.	Collab.	Year	Observa	ble	Kinematic dependence	No. of points used / all
1	HERMES	2001	A^+_{LU}		ϕ	10 / 10
2		2006	$A_C^{\cos i\phi}$	i = 1	t	4 / 4
3		2008	$A_C^{\cos i\phi}$	i = 0, 1	x_{Bj}	18 / 24
			$A_{UT}^{\sin(\phi-\phi_S)\cos i\phi}$	i = 0		
			$A_{\rm UT}^{\sin(\phi-\phi_S)\cos i\phi}$	i = 0.1		
			$A_{UT}^{\cos(\phi-\phi_S)\sin i\phi}$	i = 1		
4		2009	$A_{LUI}^{\sin i\phi}$	i = 1, 2	x_{Bi}	35 / 42
			$A_{LUDVCS}^{\sin i\phi}$	i = 1	5	
			$A_C^{\cos i\phi}$	i = 0, 1, 2, 3		
5		2010	$A_{III}^{+,\sin i\phi}$	i = 1, 2, 3	x_{Bi}	18 / 24
			$A_{LL}^{+,\cos i\phi}$	i = 0, 1, 2	25	7
6		2011	$A_{LTDVCS}^{\cos(\phi-\phi_S)\cos i\phi}$	i = 0, 1	$x_{\rm Bi}$	24 / 32
			$A^{\sin(\phi-\phi_S)\sin i\phi}$	i = 1	5.25	1 -
			$\Delta cos(\phi - \phi_S) cos i\phi$	i = 1 i = 0, 1, 2		
			LT, I $A\sin(\phi - \phi_S) \sin i\phi$	i = 0, 1, 2 i = 1, 2		
7		0010	$A_{LT,I}$	i = 1, 2 i = 1, 2		25 / 49
(2012	$A_{LU,I}$	$i \equiv 1, 2$	$x_{ m Bj}$	33 / 42
			$A_{LU,DVCS}$	i = 1		
			A_C^{OOU}	i = 0, 1, 2, 3		0 / 0
8	CLAS	2001	A_{LU}	i = 1, 2		0 / 2
9		2006	A_{UL}	i = 1, 2		$\frac{2}{2}$
10		2008	A_{LU}		ϕ	283 / 737
11		2009	$A = A_{LU}$		ϕ	22 / 33
12		2015	A_{LU}, A_{UL}, A_{LL}		ϕ	311 / 497
13	TT 11 4	2015	$d^{\star}\sigma_{UU}$		ϕ	1333 / 1933
14	Hall A	2015	$\Delta d^4 \sigma_{LU}$		ϕ	228 / 228
15		2017	$\Delta d^4 \sigma_{LU}$		ϕ	276 / 358
16	COMPASS	2018	$d^{3}\sigma_{UU}^{\pm}$		t	2 / 4
17	ZEUS	2009	$d^{s}\sigma_{UU}^{+}$		t	4 / 4
18	H1	2005	$d^{3}\sigma_{U}^{+}U$		t	7 / 8
19		2009	$d^{s}\sigma_{UU}^{\pm}$		t	12 / 12
					SUM:	$2624 \ / \ 3996$

(exclusion denoted by open symbols and grey areas)

PARTONS project

PARTONS - modern platform to study GPDs

- Open source project to support effort of whole
 GPD community
- For theoreticians, experimentalists and phenomenologists
- Come with number of available physics developments implemented
- Addition of new developments as easy as possible

To download and for tutorials, useful information, reference documentation see:

http://partons.cea.fr

For detail description of architecture see: Eur. Phys. J. C78 (2018) 6, 478 PARTONS virtual machine (example of dissemination method):

H. Moutarde, P. S., J. Wagner "*Border and skewness functions from a leading order fit to DVCS data*" Eur. Phys. J. C78 (2018) 11, 890

Goal: global extraction of Compton Form Factors (CFFs) from DVCS data using LO/LT formalism

Analysis done within PARTONS project

Cross-section for single photon production $(l + N \rightarrow l + N + \gamma)$:

imaginary part

$$Im\mathcal{G}(\xi,t) = \pi G^{(+)}(\xi,\xi,t) = \pi \sum_{q} e_q^2 G^{q(+)}(\xi,\xi,t)$$

$$G^{q(+)}(x,\xi,t) = G^{q}(x,\xi,t) \mp G^{q}(-x,\xi,t)$$
$$G^{q(+)}(\xi,\xi,t) = G^{q_{\text{val}}}(\xi,\xi,t) + 2G^{q_{\text{sea}}}(\xi,\xi,t)$$

"-" for
$$G \in \{H, E\}$$

"+" for $G \in \{\widetilde{H}, \widetilde{E}\}$

real part

$$\begin{aligned} ℜ\mathcal{G}(\xi,t) = \mathrm{P.V.} \int_0^1 G^{(+)}(x,\xi,t) \left(\frac{1}{\xi-x} \mp \frac{1}{\xi+x}\right) \mathrm{d}x \\ ℜ\mathcal{G}(\xi,t) = \mathrm{P.V.} \int_0^1 G^{(+)}(x,x,t) \left(\frac{1}{\xi-x} \mp \frac{1}{\xi+x}\right) \mathrm{d}x + C_G(t) \\ &C_H(t) = -C_E(t) \qquad C_{\widetilde{H}}(t) = C_{\widetilde{E}}(t) = 0 \end{aligned}$$

Relation between subtraction constant and D-term:

$$C_{G}^{q}(t) = 2 \int_{-1}^{1} \frac{D^{q}(z,t)}{1-z} dz \equiv 4D^{q}(t)$$

 $z = \frac{x}{\xi}$

where

Decomposition into Gegenbauer polynomials:

$$D^{q}(z,t) = (1-z^{2}) \sum_{i=0}^{\infty} d_{i}^{q}(t) C_{2i+1}^{3/2}(z)$$

Connection to EMT FF:

$$D^{q}(t) = \sum_{\substack{i=1\\\text{odd}}}^{\infty} d_{i}^{q}(t)$$

$$d_1^q(t) = 5C^q(t)$$

$$C_G^q(t) = 2 \int_{(0)}^1 \left(G^{q(+)}(x, x, t) - G^{q(+)}(x, 0, t) \right) \frac{1}{x} dx$$

subtraction constant as analytic continuation of Mellin moments to j = -1

 $G^{q}(x,0,t) = pdf_{G}^{q}(x) \exp(f_{G}^{q}(x)t) \qquad \qquad f_{G}^{q}(x) = A_{G}^{q}\log(1/x) + B_{G}^{q}(1-x)^{2} + C_{G}^{q}(1-x)x$

- reduction to PDFs and correspondence to EFFs
- modify "classical" log(1/x) term by $B_{G^q}(1-x)^2$ in low-x and by $C_{G^q}(1-x)x$ in high-x regions
- polynomials found in analysis of EFF data → good description of data
- allow to use the analytic regularisation prescription
- finite proton size at $x \rightarrow 1$

$$G^{q}(x,x,t) = G^{q}(x,0,t) \ g^{q}_{G}(x,x,t) \qquad g^{q}_{G}(x,x,t) = \frac{a^{q}_{G}}{(1-x^{2})^{2}} \left(1 + t(1-x)(b^{q}_{G} + c^{q}_{G}\log(1+x))\right)$$

- at x → 0 constant skewness effect
- at $x \rightarrow 1$ reproduce power behaviour predicted for GPDs in Phys. Rev. D69, 051501 (2004)
- t-dependence similar to DD-models with (1-x) to avoid any t-dep. at x = 1

Subtraction constant:

t = 0

Nucleon tomography:

Nucleon tomography:

H. Moutarde, P. S., J. Wagner "*Unbiased determination of Compton Form Factors*" accepted by Eur. Phys. J. C, preprint: arXiv: hep-ph/1905.02089

Goal: global extraction of Compton Form Factors (CFFs) from DVCS data using ANN technique

Analysis done within PARTONS project

Input data

Performance:

χ^2 /nPoints = 2243.5/2624 ≈ 0.85

No.	Collab.	Year	Ref.	χ^2	n	χ^2/n
1	HERMES	2001	[17]	10.7	10	1.07
2		2006	[18]	5.5	4	1.38
3		2008	[19]	18.5	18	1.03
4		2009	[20]	34.7	35	0.99
5		2010	[21]	40.7	18	2.26
6		2011	[22]	16.7	24	0.70
7		2012	[23]	22.4	35	0.64
8	CLAS	2001	[24]		0	
9		2006	[25]	1.0	2	0.52
10		2008	[26]	376.4	283	1.33
11		2009	[27]	28.3	22	1.29
12		2015	[28]	306.6	311	0.99
13		2015	[29]	884.7	1333	0.66
14	Hall A	2015	[15]	231.8	228	1.02
15		2017	[16]	211.4	276	0.77
16	COMPASS	2018	[30]	3.0	2	1.50
17	ZEUS	2009	[31]	5.49	4	1.38
18	H1	2005	[32]	22.2	7	3.17
19		2009	[33]	23.4	12	1.95

15

125

PARTONS Fits NN 2019

@ t =
$$-0.3 \text{ GeV}^2$$
, Q² = 2 GeV²

$$\xi \approx \frac{x_{\rm B}}{2 - x_{\rm B}}$$

@ ξ = 0.2, t = -0.3 GeV²

@ ξ = 0.002, t = -0.3 GeV²

as function of ξ @ |t| = 0.3 GeV², Q² = 2 GeV² as function of Q² @ ξ = 0.2, |t| = 0.3 GeV² as function of |t| @ ξ = 0.2, Q² = 2 GeV²

- Direct extraction of subtraction constant \rightarrow encouraging precision
- As expected, no ξ behaviour observed
- Strong, model independent constraints on modeling of this quantity

Generalised Parton Distributions

- novel way to describe partonic structure of nucleon
- allows to study (highlights):
 - \rightarrow nucleon tomography
 - \rightarrow total angular momentum of partons
 - \rightarrow "mechanical" properties of parton distributions

Global analysis of DVCS data

- complementary approaches \rightarrow classic Ansatz and ANN
- done with PARTONS framework -
- allows to access (highlights):
 - \rightarrow nucleon tomography
 - \rightarrow "mechanical" properties of parton distributions

Clear need to have EIC!