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Neutral Current Cross Section (F,), H1, ZEUS and combination.
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H1 and ZEUS Collab., H. Abramowicz et al., Eur.Phys.J.C75 (2015) 12, 580
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Neutral Current c and b Cross Sections, H1, ZEUS and Combined

H1 and ZEUS Collab., H. Abramowicz et al., Eur.Phys.J.C78 (2018), 473
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So why does it work so well?

To understand this, we need to understand DIS kinematic reconstruction for colliders in general and conventions
for HERA in particular.

EIC Kinematics for Fixed Target Physicists: E. Long

A

Electrons enter from
the left!! 27.5 GeV

_ Protons enter from the
right I 820 GeV

e Zand 0, are defined in the
opposite way from fixed target
notation.

* “hadron” in this context means
everything in the detector
except the scattered electron.
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https://jleic-docdb.jlab.org/cgi-bin/public/ShowDocument?docid=350

E'pz

There is an important kinematical concept ),,,(E — pz) where n is over all particles: E-p, for short.
The initial (before collision) E-p, = 2E, , because E,=p,, and E.=-p., (remember the direction of Z!)

Remnants of the proton — \ my O VA
escape down the beamhole

L =

A

| can evaluate E-p, of an event by

H1 detector 55 GeV = summing over all energy deposits
PR i L in the detector.
£ 0| | Even though the detector is not
© 60} completely hermetic, E-p,=2E,
40: " anyway as long as the electron
f didn’t escape down the (right)
I beampipe!
o* 40 50 60 70
E-p,/ GeV
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Reconstructing x and Q2

2

4 quantities are conveniently well-measured. ((\Q\Q
because a lot of energy escapes down the beampipe ?

( &Y P PP ° electron

in the positive Z direction.)

\
4

proton

The scattered electron energy: E’,

The scattered electron angle: 6,

The transverse momentum of the “hadrons”: prjuq
”longitudinal momentum” of the “hadrons”: (E — pz )44

you can recast these as "angle” and “energy” of the quark \

“hadrons”

E-p, from last page without the contribution from the
scattered electron.

x and Q2 can be reconstructed using any 2 of these quantities (and the electron and proton beam energies)

S - 0, (step 20°) ¥ S - E, (step 5 GeV)
4 I(IJL_—

10°F I reaL

So why do something other then use
the electron energy and angle ?

10 "'5 10 "'_

X not well

measured by
electron variables

in large areas
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Choosing how to reconstruct x and Q2

LAr Calorimeter
12%/sqrt(E) electrons
50%/sqrt(E) hadrons

Depends on the detector and its characteristics
ZEUS Detector

U-Scintillator Calorimeter
18%/sqrt(E) electrons

& - 35%/sqrt(E) hadrons Many other differences: segmentation, tracking...
4 ¢ 3 “
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Optimizing reconstruction of x and Q2 (and y)

N. Tuning thesis (ZEUS)

/Different ways of combining the 4 quantities; chose “PT” in this case.

140<y,< 180 H1 reached a different conclusion.
For them the ¥ method worked best.

events

Alexander Kappes thesis (ZEUS)

b

0 /

.5
2 2 ) )
ch'u.\/ Qn'm' X ma'u.\/ X true

Crack
between
| calorimeters

0 / 2 0.5 /

y /)

JSmeas v mrue

So what do we do now to get to cross-sections
as function of x and Q?2?
First, reconstruct x and Q2 of each event 2

Now decide on the binning

2 -1
10 10 X
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Cross Section (F,) determination

N
: : : . 2 ‘Vdata
In case of a perfect detector the cross section for a particular bin of x and Q2 is: Umeas(AI, AQ ) =

L

A

\

Int. Luminosity

In reality, we need to take into account correction due to acceptance, migration, background...etc. so

Omeas( Az, AQ?) = Ndata C(x, 0?) There are fancier ways of ”unfglding” but the basic
L conclusion for our purposes will be the same

C(x, Q%) isthe correction factor that takes into account all detector effects.

C(x, Q%) is affected by systematic uncertainties related to the detector

For example:
Q> = 2E.E'(1+ cosé,)
T \Angle mis-measurement will have a more complex effect

If this is mis-measured by n%, all Q2 will be mis-measured by n%

Note: effects of mis-measurement (i.e. systematic errors) are completely correlated bin to bin

T
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Correlation of Systematic Uncertainties

ZEUS 19%4
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The systematic uncertainties are determined by changing
something (e.g. calorimeter energy scale) within its uncertainties
and determining the cross-section again.

The shape as a function of y (in this case), is determined by how
the affected quantity (one of 4 from page 6) enters the
reconstruction.

§ Class A Closs B
-:: [0 0 —————-"J
'-§—O.1 - Pos?t?\v/ec!uss -0.1 F
Different classed of uncertainties S R Y S
have different “shapes” e 0T,

ZEUS Collaboration
Z Phys. C72 (1996) 399-424
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http://link.springer.com/article/10.1007%2Fs002880050260

Correlated systematic uncertainties.

MRST(2001) NLO fit. x=0.0032 - 0.0175

H1

Can lead to this kind of “difference” between H1
and ZEUS.
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assumption on something (e.g. scattered electron energy)
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So now let’s think about how to combine the
two data sets.
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Construct a bin-by-bin Chi-square for the two experiments

Constructed with only the assumption that the two experiments
are measuring the same cross-section in each bin.
(This is unlike global fits where pQCD and other assumptions enter)

experiments
Z ,yl ,ave 1

A/

H1 and ZEUS Collab., H. Abramowicz et al., Eur.Phys.).C75 (2015) 12, 580

H1 and ZEUS
g NC ¢'p g * NC ¢'p % 9 NCe'p
:i 0P < A5 GeV? 5 8 3.5 < QP < 100 GeV? E 8 100 < OF < 50000 GeV?
RMS = 1.06 RMS = 1.07 RMS =097

2
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More examples of the combination results

H1 and ZEUS Collab., H. Abramowicz et al., Eur.Phys.J.C75 (2015) 12, 580

H1 and ZEUS
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What happens to systematic uncertainties.

“ZEUS”
AF,

E’. shifted +6

AF,

»logy

E’c shifted -6

IIH 1”

E’. shifted +6

E’. shifted -6

e ZEUS and H1 have similarly sized uncertainties.

* ZEUS and H1 have differently “shaped” uncertainty correlations—different
detector and different reconstruction of kinematic quantities.

= ZEUS and H1 have different best measured regions.

=» You win big from the fit

15

» logy
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Consider the case if there is no statistical uncertainty

AF,

AF,

“H1” “New ZEUS”
AF,

E’. shifted +6 E’. shifted +6

> | gy

E’. shifted -6

| get to use the small uncertainty of “H1” at low y

“ZEUS” to shrink my uncertainty for ”ZEUS” Now I can use the small
uncertainty of “new ZEUS”

to shrink the H1 errors to

E’, shifted +& “nothing”
»log y Of course in practice, the improvement is limited
by statistical uncertainties, and our imperfect knowledge
E’. shifted -5 of the systematic correlations.
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Designing Complementarity

* No one at HERA started by thinking about cancelling systematics between H1 and
ZEUS.

« Maybe we should have, though...

 So what were the elements that made this work well?

—H1 and ZEUS had opposite strength in calorimetry.
« ZEUS: 18%/sqrt(E) electrons, 35%/sqrt(E) hadrons— "4n” coverage

* H1: [12%(barrel) to 7.5%("rear”)])/sqrt(E) electrons, 50%(barrel)/sqrt(E) hadrons, no hadron
calorimeter in “rear”.

—What we were measuring (x and Q?) were over-constrained (electron energy and angle,
hadron energy and angle).

—x and Q? could be measured over much of the kinematic plane using different methods that
utilized different measurements.

So as a result ZEUS and H1 ended up deciding on reconstruction methods with the right
characteristics for cancellation of systematics.

EIC Users Group Meeting, Paris 17 Jgfegon Lab



Conclusions

 To my knowledge, there has never been a large scale attempt to design collider
detector(s) in such a way as to minimize systematics by trying to cancel them.

* Normally

— Detector elements are individually studied for systematic uncertainties before the
experiments.

— After the experiment, during the analyses, we hunt for ways to control the systematics.

* There is no reason, that H1 and ZEUS detectors could not have been designed to
cancel each others systematics.

— This happened essentially by accident.
— Could the cancellation been much better, if we had planned for it?

« | think it's time to start taking these things into account as we build new detector(s).
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