Nuclear matter effects in the Electron Ion Collider: How can heavy-ion physics profit from eA measurements

Elena G. Ferreiro

IGFAE, Universidade de Santiago de Compostela, Spain

Status of Heavy lons

Bulk Observables: p~<pt>,T ~ 99% of detected particles

Hard Probes: p >> <pt>,T ~ 1% of detected particles

Current status: matter created in AA at RHIC and LHC, with energy densities larger than those expected in lattice QCD for deconfinement=>QGP

- collective features in the soft sector
- well described by relativistic hydrodynamics if applied very early (≤ 1 fm/c) after the collision
- equilibration?

- very opaque to energetic partons or particles traversing
- modification of the yield of hard probes like high-p_T particles, jets, quarkonia

Old paradigm: the three systems (understanding before 2012)

Pb-Pb pp p-Pb

Hot QCD matter:

This is where we expect the QGP to be created in central collisions

QCD baseline: This is the baseline for "standard" QCD phenomena

Cold QCD matter:

This is to isolate nuclear effects in absence of QGP, e.g. nuclear pdfs

Totally unexpected:

the discovery of correlations -ridge, flow- in small systems pA & pp

- Smooth continuation of heavy ion phenomena to small systems and low density
- Small systems as pA and pp show QGP-like features

Totally unexpected:

the discovery of correlations --ridge, flow- in small systems pA & pp

- Smooth continuation of heavy ion phenomena to small systems and low density
- Small systems as pA and pp show QGP-like features
- Two serious contenders remain today:
 - initial state: quantum correlations as calculated by CGC
 - final state: interactions leading to collective flow described with hydrodynamics => equilibration?

Totally unexpected:

the discovery of correlations --ridge, flow- in small systems pA & pp

- Smooth continuation of heavy ion phenomena to small systems and low density
- Small systems as pA and pp show QGP-like features
- Two serious contenders remain today:
 - initial state: quantum correlations as calculated by CGC
 - final state: interactions leading to collective flow described with hydrodynamics => equilibration?

The old paradigm that

- we study hot & dense matter properties in heavy ion AA collisions
- cold nuclear matter modifications in pA
- and we use **pp** primarily as comparison data **appears no longer sensible**

Totally unexpected:

the discovery of correlations -ridge, flow- in small systems pA & pp

- Smooth continuation of heavy ion phenomena to small systems and low density
- Small systems as pA and pp show QGP-like features
- Two serious contenders remain today:
 - initial state: quantum correlations as calculated by CGC
 - final state: interactions leading to collective flow described with hydrodynamics => equilibration?

The old paradigm that

- we study hot & dense matter properties in heavy ion AA collisions
- cold nuclear matter modifications in pA
- and we use **pp** primarily as comparison data **appears no longer sensible**

We should examine a new paradigm, where the physics underlying soft collective signals can be the same in all high energy reactions, from e⁺e⁻ to central AA

It becomes fundamental to have access to ep & eA collisions

We do not have a **QUANTITATIVE** understanding of the nuclear behaviour

required for A-A and QGP studies

We do not have a **QUANTITATIVE** understanding of the nuclear behaviour

required for A-A and QGP studies

E. G. Ferreiro USC

We do not have a **QUANTITATIVE** understanding of the nuclear behaviour The colliding objects

required for A-A and **QGP** studies

<u>Gluons from saturated nuclei</u> \rightarrow Glasma?

 \rightarrow

Reconfinement

We do not have a **QUANTITATIVE** understanding of the nuclear behaviour **The colliding objects**

<u>Gluons from saturated nuclei</u> \rightarrow Glasma?

QGP

 \rightarrow

required for A-A and QGP studies

Dense regime: lack of information about

- small-x partons
- correlations
- transverse structure

We do not have a **QUANTITATIVE** understanding of the nuclear behaviour The colliding objects

required for A-A and QGP studies

<u>Gluons from saturated nuclei</u> \rightarrow Glasma?

QGP

 \rightarrow

Reconfinement

Dense regime: lack of information about

- small-x partons
- correlations
- transverse structure

ep and eA:

- nuclear WF & PDFs
- mechanism of particle production
- tomography

E. G. Ferreiro USC

We do not have a understanding of t	QUANTITATIVE he nuclear behaviour	required for A-A and QGP studies
The colliding objects	Early stages	Analyzing the medium
Gluons from saturated	$\frac{1}{1} \rightarrow \text{Glasma}^2 \rightarrow \text{OGP}$	Reconfinement
 Dense regime: lack of information about small-x partons correlations transverse structure 	 Particle production at the very beginning: Which factorization? How can a system behave as isotropised so fast? 	
 ep and eA: nuclear WF & PDFs mechanism of particle production tomography 	 ep and eA: initial conditions for plasma formation how small can a system be and still show collectivity? 	

E. G. Ferreiro USC

We do not have a understanding of the The colliding objects	QUANTITATIVE ne nuclear behaviour Early stages ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	required for A-A and QGP studies Analyzing the medium ✓ Reconfinement
 Dense regime: lack of information about small-x partons correlations transverse structure 	Particle production at the very beginning:Which factorization?How can a system behave as isotropised so fast?	 Probing the medium through energetic particles: Dynamical mechanisms for opacity How to extract accurately medium parameters?
 ep and eA: nuclear WF & PDFs mechanism of particle production tomography 	 ep and eA: initial conditions for plasma formation how small can a system be and still show collectivity? 	

We do not have a understanding of the The colliding objects	QUANTITATIVE ne nuclear behaviour Early stages ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	required for A-A and QGP studies Analyzing the medium Reconfinement
 Dense regime: lack of information about small-x partons correlations transverse structure 	Particle production at the very beginning:Which factorization?How can a system behave as isotropised so fast?	 Probing the medium through energetic particles: Dynamical mechanisms for opacity How to extract accurately medium parameters?
 ep and eA: nuclear WF & PDFs mechanism of particle production tomography 	 ep and eA: initial conditions for plasma formation how small can a system be and still show collectivity? 	 ep and eA: modification of radiation and hadronization in the nuclear medium initial effects on hard probes

E. G. Ferreiro USC

- Parton densities in nuclei are modified Bound nucleon ≠ free nucleon
- Nuclear PDF assumed to be factorizable in terms of the nucleon PDFs

 $f_i^A(x,Q^2) = \frac{R_i^A(x,Q^2)}{R_i}f_i(x,Q^2)$

• If nuclear effects at play $R_i^A(x, Q^2) \neq 1$

Nuclear PDFs, obeying Usual perturbative coefficient functions

assuming collinear factorization

- Parton densities in nuclei are modified Bound nucleon ≠ free nucleon
- Nuclear PDF assumed to be factorizable in terms of the nucleon PDFs

 $f_i^A(x,Q^2) = \frac{R_i^A(x,Q^2)}{f_i(x,Q^2)} f_i(x,Q^2)$

$\sigma_{\mathrm{DIS}}^{\ell+A\to\ell+X} = \sum_{i=q,\overline{q},g} f_i^A(\mu^2) \otimes \hat{\sigma}_{\mathrm{DIS}}^{\ell+i\to\ell+X}(\mu^2)$

Nuclear PDFs, obeying Usua the standard DGLAP coeff

Usual perturbative coefficient functions

assuming collinear factorization

Lack of data:

 large uncertainties for the nuclear PDFs at small scales and x

- Parton densities in nuclei are modified Bound nucleon ≠ free nucleon
- Nuclear PDF assumed to be factorizable in terms of the nucleon PDFs

 $f_i^A(x,Q^2) = R_i^A(x,Q^2) f_i(x,Q^2)$

Lack of data:

 large uncertainties for the nuclear PDFs at small scales and x

$$\sigma_{\text{DIS}}^{\ell+A \rightarrow \ell+X} = \sum_{i=q,\bar{q},g} f_i^A(\mu^2) \otimes \hat{\sigma}_{\text{DIS}}^{\ell+i \rightarrow \ell+X}(\mu^2)$$
Nuclear PDFs, obeying Usual perturbative coefficient functions assuming collinear factorization
$$ssuming \text{ collinear factorization}$$

$$\int_{14}^{6} \frac{Prompt Jray production at VS_{NN} = 5.02 \text{ TeV LHO}}{I A} \frac{PSO9LO}{I CTEO15} = 1 \text{ In pPb@5 TeV}$$

$$\int_{14}^{6} \frac{J/\psi}{I A} \frac{I DPB}{I A} \frac{I DP$$

• Problem for benchmarking in HIC in order to extract medium parameters

- Parton densities in nuclei are modified Bound nucleon ≠ free nucleon
- Nuclear PDF assumed to be factorizable in terms of the nucleon PDFs

 $f_i^A(x,Q^2) = R_i^A(x,Q^2) f_i(x,Q^2)$

Lack of data:

 large uncertainties for the nuclear PDFs at small scales and x

$$\sigma_{\text{DIS}}^{\ell+A \to \ell+X} = \sum_{i=q,\overline{q},g} f_i^A(\mu^2) \otimes \hat{\sigma}_{\text{DIS}}^{\ell+i \to \ell+X}(\mu^2)$$

Nuclear PDFs, obeying Usual perturb

the standard DGLAP

Usual perturbative coefficient functions

assuming collinear factorization

nPDFs status

Several nPDF sets available (using various data, different orders, etc) Nestor Armesto

- Without additional experimental input, we are rather far from being able to probe in detail the nuclear modications of the quark and gluon PDFs
- Large uncertainties for x<0.01 and for large x glue
- Small impact of LHC data

nPDFs: what we can learn in an ep/eA collider

At an ep/eA collider:

- DIS theoretically much cleaner
- PDF of a single nucleus possible, no need of ratios as for pA
- Same method of extraction in both ep and eA

The direct observable used for constraining the nPDF is the red. cross section σ r expressed in terms of the structure function F_2 and F_L and gluons

- Old fixed-target DIS experiments: σ r dominated by F_2
- EIC high luminosity and wide kinematic reach will enable the direct extraction of $F_L =>$ more information on the behaviour of the nuclear gluons
- EIC will offer possibilities to measure the charm (bottom) structure function
 => complementary information on the gluon distribution in nuclei

The direct observable used for constraining the nPDF is the red. cross section σ r expressed in terms of the structure function F_2 and F_L and gluons

- Old fixed-target DIS experiments: σ r dominated by F_2
- EIC high luminosity and wide kinematic reach will enable the direct extraction of $F_L =>$ more information on the behaviour of the nuclear gluons
- EIC will offer possibilities to measure the charm (bottom) structure function
 => complementary information on the gluon distribution in nuclei

1708.05654

- Pseudodata generated with PYTHIA+EPS09
- Uncertainties as achieved at HERA
- Pseudodata included in EPPS16 global fits

The direct observable used for constraining the nPDF is the red. cross section σ r expressed in terms of the structure function F_2 and F_L and gluons

- Old fixed-target DIS experiments: σ r dominated by F_2
- EIC high luminosity and wide kinematic reach will enable the direct extraction of $F_L =>$ more information on the behaviour of the nuclear gluons
- EIC will offer possibilities to measure the charm (bottom) structure function
 => complementary information on the gluon distribution in nuclei

1708.05654

- Pseudodata generated with PYTHIA+EPS09
- Uncertainties as achieved at HERA
- Pseudodata included in EPPS16 global fits

- EIC eAu pseudodata included in EPPS16-like global fits:
- Impact of low (5 GeV) and high (20 GeV) E_e, and of charm

1708.05654

large impact for the large x glue

1

1

- EIC eC and eAu pseudodata included in nNNPDF-like global fits:
- Impact of low (5 GeV) and high (20 GeV) E_e

1904.00018

Small x and non-linear dynamics: saturation

Small x and non-linear dynamics: saturation

- Radiation as x decreases → large number of gluons
- At small x, alternatives to collinear approaches exist, breaking collinear factorisation including non-linear dynamics
- Determining the dynamics at small x has been a major subject at HERA, and RHIC and the LHC both in pp, pA and AA
 ep and eA essential
- Non-linear resummation techniques (weak coupling but nonperturbative CGC) better for dilute-dense systems: pA, eA

E. G. Ferreiro USC

Paris 22/7/2019

 $\ln O^2$

Trying to discriminate: non-linear effects vs linear DGLAP evolution

EIC F^{Au}₂ and F^{Au}_L pseudodata with saturation effects based on rcBK evolution:

- F₂: Pseudodata for x<10⁻³ lies in the upper limit of the nPDFs
- F_L: Big differences, gluon density not well determined

Saturation modifies evolution: tension between the description in DGLAP analyses if enough lever arm in Q² at small x available

E. G. Ferreiro USC

Nuclear matter effects in the EIC

Paris 22/7/2019

Trying to discriminate: non-linear effects vs linear DGLAP evolution

Reweighting nPDFS with EIC rcBK F^{Au}₂ and F^{Au}_L pseudodata:

- The results look quite different from the original distributions
- If EIC provide data compatible with the expected theoretical description from the saturation model, a successful refitting of the nPDFs may not be achievable, unambiguously signal the presence of non-linear effects

Trying to discriminate: non-linear effects vs linear DGLAP evolution

Diffractive physics will be a major component of the e+A program at an EIC

- HERA observed: ~14% of all events are diffractive
- Saturation models predict up to $\sigma_{diff}/\sigma_{tot} \approx 25\%$ in eA
- Ratio enhanced for small M_x and suppressed for large M_x
- Standard QCD predicts no M_x dependence and a moderate suppression due to shadowing.

Diffraction can be a most precise probe of non-linear dynamics in QCD

• High sensitivity to gluon density: $\sigma^{2}[g(x,Q^{2})]^{2}$ due to color-neutral exchange

Early stages: Collectivity in small systems? The ridge

The ridge: 2-particle long range correlation elongated in η and collimated in azimuth In AA attributed to final state interactions described by hydro: signal of equilibration

Pb-Pb

The ridge

The ridge: 2-particle long range correlation elongated in η and collimated in azimuth In AA attributed to final state interactions described by hydro: signal of equilibration

The ridge

The ridge: 2-particle long range correlation elongated in η and collimated in azimuth In AA attributed to final state interactions described by hydro: signal of equilibration

Different theoretical models of the ridge: hydrodynamic flows, local hot spots, initial-state fluctuations, parton cascades, glasma flux tubes, glasma turbulence fields, the momentum kick model, pQCD modeling, etc.

The ridge

The ridge: 2-particle long range correlation elongated in η and collimated in azimuth In AA attributed to final state interactions described by hydro: signal of equilibration

Different theoretical models of the ridge: hydrodynamic flows, local hot spots, initial-state fluctuations, parton cascades, glasma flux tubes, glasma turbulence fields, the momentum kick model, pQCD modeling, etc.

Two lines of explanations:

Initial state effect

- → CGC: assuming that the final state carry the imprint of initial-state correlations Medium effect
- Coupling to a flowing medium: hydrodynamics at work already on pPb@LHC

What about IC?

The flow

The experimental data was surprising:

• Similarity of experimental data in pA and AA collisions

Hydro works well in AA

Hydro also works well in pA

Some issues:

- Very sensitive to the initial state
- Applicability of hydrodynamics is questionable

The flow

Different initial states: very different results

The flow

Different initial states: very different results

Proton substructure can matter (effects of the fluctuating shape of the proton)

E. G. Ferreiro USC

Nuclear matter effects in the EIC

Paris 22/7/2019

The success of hydro for small systems:

• Signal of equilibration or non-equilibrium evolution of a partonic system in QCD?

The success of hydro for small systems:

• Signal of equilibration or non-equilibrium evolution of a partonic system in QCD?

If equilibrium is no longer a requirement:

- this naturally explain why pp data on azimuthal correlations appears to be so similar to data obtained in nucleus-nucleus collisions
- hydrodynamics will generically convert initial state geometry and fluctuations into correlations, thus making large and small systems look alike
- pushing this idea even further would imply that any lump of sufficiently high energy density could expand according to the laws of hydrodynamics
 => natural consequence: presence of azimuthal correlations in e⁺e⁻ collisions?

Preliminary analysis by ZEUS and ALEPH put strong limits on azimuthal 2-particle correlations in ep at HERA and e⁺e⁻ at LEP

Multiplicity-dependent c_1 {2} and c_2 {2} with increasing η -separation

 $|\Delta \eta| > 2.0$: $c_1\{2\}$ changes sign \rightarrow consistent with momentum conservation.

 $|\Delta\eta|>$ 2.0: $c_2\{2\}$ consistent with zero.

Switching off the flow: e+e-

No evidence of long-range correlations beyond Pythia expectation

Nuclear matter effects in the EIC

Paris 22/7/2019

The success of hydro for small systems:

• Signal of equilibration or non-equilibrium evolution of a partonic system in QCD?

If equilibrium is no longer a requirement:

- this naturally explain why pp data on azimuthal correlations appears to be so similar to data obtained in nucleus-nucleus collisions
- hydrodynamics will generically convert initial state geometry and fluctuations into correlations, thus making large and small systems look alike
- pushing this idea even further would imply that any lump of sufficiently high energy density could expand according to the laws of hydrodynamics
 => natural consequence: presence of azimuthal correlations in e⁺e⁻ collisions?

What about a non-hydro initial-state explanation?

• long range rapidity correlations from initial state correlations

The success of hydro for small systems:

• Signal of equilibration or non-equilibrium evolution of a partonic system in QCD?

If equilibrium is no longer a requirement:

- this naturally explain why pp data on azimuthal correlations appears to be so similar to data obtained in nucleus-nucleus collisions
- hydrodynamics will generically convert initial state geometry and fluctuations into correlations, thus making large and small systems look alike
- pushing this idea even further would imply that any lump of sufficiently high energy density could expand according to the laws of hydrodynamics
 => natural consequence: presence of azimuthal correlations in e⁺e⁻ collisions?
- What about a non-hydro initial-state explanation?
- long range rapidity correlations from initial state correlations

The ideal place to further investigate this:

smaller systems ep and eA, that are in any case required for the initial conditions

Conclusions

ep & eA collisions at high energy offer huge possibilities:

To provide information about QCD first principles:

- Partonic structure
- New regimes of QCD
- 3D structure of hadrons and nuclei
- The role of gluons in structure and dynamics
- Dynamics of QCD radiation and hadronization
- Confinement: understand the emergence of hadrons from color charge

To clarify aspects of pp, pA and AA collisions at high energy:

- Initial conditions for macroscopic descriptions
- Nature of collectivity
- Thermalization
- Extraction of parameters of the medium
- Distinguish "genuine" QGP effects

Backup

Goal of HIC experiments: Study hot and dense QCD matter

Bulk Observables: p~<pt>,T ~ 99% of detected particles

Multiplicities

Thermal dileptons & direct photons Asymmetries, correlations, fluctuations

Collective behavior of the medium Initial conditions: T, ϵ , μ Thermalization and hydrodynamics Hard Probes: p >> <pt>,T ~ 1% of detected particles Fast quarks and gluons Jet quenching

Quarkonia dissociation

Medium tomography & diagnosis Interpretation requires "vacuum" (p+p) and "cold nuclear" (p+Pb) data at the same energy

Saturation: what we can learn in an ep/eA collider

- At small x, alternatives to collinear approaches exist, some of them breaking collinear factorisation or including non-linear dynamics
- Determining the dynamics at small x has been a major subject at HERA, and RHIC and the LHC both in pp, pA and AA
- Non-linear resummation techniques (weak coupling but nonperturbative CGC) better for dilute-dense systems: pA, eA
- One would expect naively that suppression effects are larger when going from p to A in saturation than in collinear approaches
- Not necessarily: nuclear unitarization effect can be smaller for an already unitarized proton input
 - => saturation due to the increase of density when going from p to A could be smaller for an already saturated proton input

ep and eA essential

Partonic evolution and hadronization

Relevant for particle production and QGP analysis in HIC:

Low energy:

hadronization in matter

- (pre)hadronic absorption
- formation time

jets plentiful in eA benchmark for jet quenching studies in AA

Other possible studies: quarkonium production

Production mechanism and polarization:

polarized J/ ψ photoproduction can be studied more precisely and up to much larger values of p_T in ep @ LHeC \Rightarrow test NRQCD factorization in charmonium physics

Butenschoen Kniehl

Charmonium WF in diffractive DIS within the dipole formalism Cheng et al.

Spatial and Momentum Tomography of Hadrons and Nuclei

Gluon TMDs could be directly probed by looking at p_T distributions and azimuthal asymmetries in e p \rightarrow e Q Q X **Boer, Lansberg, Pisano**

Gluon GPDs

Y production at an EIC to determine the gluon density transverse spatial profiles in a wide range of x and consequently provide a path to determine the gluonic radius of the nucleon and the contribution of the total angular momentum of gluons to the nucleon spin Joosten and Meziani