ULTRA-PERIPHERAL COLLISIONS: FROM HERA, RHIC & LHC TO EIC

Ronan McNulty EIC Workshop, Paris, 21-25 July 2019.

Overview

Introduction to Ultra-peripheral Collisions

- QCD: the present
 - Soft to hard physics
 - The Pomeron
 - Parton density functions
- QCD: the future ?
 - The odderon
 - Beyond the quark model
 - Saturation

O=3g C=P=-1 P=2g V C=P=+1

Elastic scattering dσ/dt~exp(-bt) b~R²

 $p_T \sim \sqrt{t} \sim 30 \text{ MeV (QED)}$ $p_T \sim \sqrt{t} \sim 300 \text{ MeV (QCD)}$ pp-collisions $p_T \sim \sqrt{t} \sim 100 \text{ MeV (QCD)}$ AA-collisions

PLB 778 (2018) 414.

Did TOTEM experiment discover the Odderon?

Evgenij Martynov^a, Basarab Nicolescu^b

arXiv:1901.05863

TOTEM data and the real part of the hadron elastic amplitude at 13 ${\rm TeV}$

J.R. Cudell & O. V. Selyugin

Abstract

We analyse the 13 TeV TOTEM data on elastic proton-proton scattering through a thorough statistical analysis, and obtain that $\rho = 0.096 \pm 0.006$ and $\sigma_{tot} = (107.5 \pm 1.5)$ mb. Theoretical errors could lower the cross section by about 2 mb and increase ρ by about 0.002. We also show that these results do not imply the existence of an odderon at t = 0.

(Elastic Scattering)

Central Exclusive Production (CEP)

C-odd mesons

A enhanced by Z^2

(Also odderon-pomeron fusion in hadron-hadron collisions is possible)

Ultra-peripheral collisions. 19 AA collisions p photoproduction JHEP 1509 (2015) 095 $d\sigma/dM_{\pi^{+}\pi^{-}}$ (lyl<0.5) ($b/(GeV \ \sigma^{2})$) ALICE Pb-Pb $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ 1/N_{ev} dN/dp_T(元⁺元⁻) {GeV*lc* }⁻¹ ALICE Pb-Pb $\sqrt{s_{NN}}$ = 2.76 TeV ğg ag (10⁻¹ -+ ALICE, stat. errors Söding (res.+cont.)_ ALICE, stat. errors Δ ----- BW resonance STARLIGHT coherent Ross-Stodolsky STARLIGHT incoherent SUM coh.+incoh. 10⁻² $0.6 \le M(\pi^+\pi^-) < 1.1 \text{ GeV}/c^2$ 10 $|y(\pi^+\pi^-)| < 0.5$ ALICE@LHC PbPb 2.76 TeV $p_{(\pi^+\pi^-)} < 0.15 \text{ GeV/}c$ 10⁻³ 10⁻² 0.4 0.6 0.8 1.2 1.4 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 1 M_{π*π} (GeV/c²) $p_{T}(\pi^{+}\pi^{-})$ (GeV/c) Phys.Rev. C96 (2017) no.5, 054904 do/dt [mb/(GeV/c)²] do/dM_{arr}dy [mb/GeV/c²] 10³ 0000000 Breit-Wigner interference π π 10 Breit-Wigner STAR@RHIC ω interference ρ Non-resonant n n 0.001 0.002 0.003 10 AuAu 200 GeV -t [(GeV/c)2 Remnant background e^{-bt} fit XnXn e^{-bt} fit 1n1 XnXn 1n1r -8.5 0.8 0.9 0.6 0.7 1.1 1.2 10pion pair invariant mass [GeV/c2] 0.05 0.1 -t [(GeV/c)²]

AA collisions

p photoproduction

<u>J/Ψ photoproduction</u>

pPb collisions

23_

Gluon PDF extraction

Flett, Jones, Martin, Ryskin, Teubner.

J/Ψ photoproduction

PbPb collisions

In similar way σ_{γA} gives nuclear PDFs (or shadowing)
 LHCb measurement of J/ψ CEP in Lead-lead collisions

 $p_{{\rm T},\mu^+\mu^-}^2 \, [\,{
m MeV^2\!/c^2}]$

Upsilon photoproduction

(Photon-odderon fusion is also possible – if odderon exists)

QCD: Open questions and opportunities

Odderon

- Extensions to the quark model
 - Tetraquarks
 - Hybrids
 - Glueballs
- Saturation

"Take nothing on its looks; take everything on evidence. There's no better rule." Charles Dickens, Great Expectations.

			Ultra-peript	peripheral collisions. 30		
$\sigma * d\sigma / dp_T^2 [1/GeV^2]$	The or	dderon (J/ψ odder J/ψ (photo	1) on on)		g g g g g g g g g g g g g g g g g g g	
	0 0	0.2 0.4 0.6 0.8 p _T ² [GeV ²] J odderon	1 1.2 1. 1 1.2 1. PRI ψ photon 0 8 5 0 pb	ak, Motyka, Szyma 2 75 (2007) 09402 γ odderon 0 7 4 15 pb	anowski, Cudell 3 photon	
	LHC	0.3–1.3–5 nb 0.3–0.9–4 nb	2.4–15–27 nb	0.7–4–15 pb 1.7–5–21 pb	5–31–55 pb	

Requires understanding p_T^2 spectrum for proton dissociation (or rejection of it)

The odderon (2)

Brodsky, Rathsman, Merino, PLB461 (1998) 114.

Hagler, Pire, Szymanowski, Teryaev, EPJ26 (2002) 261.

Bolz, Ewerz, Maniatis, Nachtmann, Sauter, Schoening, JHEP 1501 (2015) 151.

The odderon (3)

 $\gamma p \rightarrow \eta p, \gamma p \rightarrow \pi^0 p, \gamma p \rightarrow f_2 p, \gamma \gamma \rightarrow \pi^0 \pi^0$

Czyzewski et al., PLB398 (1997) 400. Berger et al., EPJ C9 (1999) 491. M.G. Ryskin EPJ C2 (1998) 339. Kilian & Nachtmann, EPJ C5 (1998) 317. Harland-Lang et al. arXiv:1811.12705

arXiv:hep-ex/0112012

The odderon (4)

 $\gamma p \rightarrow \eta p, \gamma p \rightarrow \pi^0 p, \gamma p \rightarrow f_2 p, \gamma \gamma \rightarrow \pi^0 \pi^0$

Czyzewski et al., PLB398 (1997) 400. Berger et al., EPJ C9 (1999) 491. M.G. Ryskin EPJ C2 (1998) 339. Kilian & Nachtmann, EPJ C5 (1998) 317. Harland-Lang et al. arXiv:1811.12705

 $d\sigma/dy|_{v=0}$ for Pbp collisions (arXiv:1811.12705)

C-even	Odderon Signal		Backgrounds		
meson (M)	Upper	QCD		Pomeron-	
	Limit	Prediction	$\gamma\gamma$	Pomeron	$V \to M + \gamma$
π^0	7.4	0.1 - 1	0.044	_	30
$f_2(1270)$	3	0.05 - 0.5	0.020	3 - 4.5	0.02
$\eta(548)$	3.4	0.05 - 0.5	0.042	negligible	3
η_c	_	$(0.1 - 0.5) \cdot 10^{-3}$	0.0025	$\sim 10^{-5}$	0.012

EIC message: Perfect use-case. High luminosity required.

Tetraquarks, hybrids, glueballs (1)

Lebiedowicz, Nachtmann, Szczurek Phys.Rev. D99 (2019) no.9, 094034

Tetraquarks, hybrids, glueballs (2)

Tetraquarks, hybrids, glueballs (3)

Selection requirement:

Require precisely 4 tracks, at least three identified as muons

Tetraquarks, hybrids, glueballs (4)

Double J/ Ψ production studied in $\gamma\gamma$ collisions

37_

Toll, Ulrich, Phys.Rev. C87 (2013) no.2, 024913

42

Saturation (4)

Once again, the 'smoking gun' is in the non-perturbative plot..... Can we separate 'saturation' from soft QCD or nuclear effects?

EIC message (slightly provocative): The forward region of the LHC accesses much lower-x than EIC. If saturation is not found in LHC data, it is unlikely to be found in EIC e-p data.

On the other hand, eA data will have much higher luminosity, less backgrounds than in AA or pA LHC data, and A^{1/3} enhancement.

Summary

 Ultra-peripheral collisions are an excellent place to study QCD, both for a precise understanding of the structure of matter and searches for more exotic phenomena.