Complementarity of the Electron-Ion Collider and the (High Luminosity)-Large Hadron Collider

Paul Newman (University of Birmingham)

- 1) Where did HERA leave us?
- 2) High x partons and LHC energy frontier discovery

/* (Q²)

р

- 3) Medium x partons and LHC precision
- 4) Flavour decomposition
- 5) Low x partons and novel parton dynamics
- 6) Possibilities from EIC

- The only ever collider of electron beams with proton beams:

 $\int s_{ep} \sim 300 \text{ GeV}$

- ~0.5 fb⁻¹ per exp't
- Both lepton charges and polarisations
- Protons unpolarised

Final HERA Picture of Proton (HERAPDF2.0)

- ~2% gluon precision, 1% on sea quarks for x ~ 10^{-2}
- Uncertainty explodes above x=10⁻¹ and below x=10⁻³
- Low x gluon rising in a non-sustainable way at large Q² ... [Note 'Standard' presentation is at Q² = 10 GeV²]

HERA's Limitations

- Limited lumi \rightarrow restricts searches and precision at high x, Q²
- Lack of Q^2 lever-arm at low $x \rightarrow$ restricts low x interpretation
- No deuterons \rightarrow limited quark flavour decomposition
- No nuclei \rightarrow insensitive to nuclear effects
- No polarised targets (except HERMES) → limited access to spin, transverse structure

ALL of these limitations are addressed by complementary proposed future DIS projects

- EIC particularly sensitive to 3D structure, flavour, high x, nuclear effects, low x in eA
- This talk (mostly) restricted to collinear PDFs

Theory v Data at LHC

- PDFs are a vital ingredient in almost all predictions
- Factorisation between ep and pp works!

Closer look at Quality of LHC Predictions...

- Pretty good at electroweak scales (intermediate x)
- Still some differences (~5%) between global fits
- More limited at low and high x

Precision at High x Matters ...

e.g. High Mass 2 Gluino Production

p

р

a

- Signature is excess @ large invariant mass over SM background (e.g. from $gg \rightarrow gg$)
- Both signal & background uncertainties driven by error on high x gluon density ...
- essentially unknown for masses much beyond 2 TeV
- Translates into a reduction in the mass range of sensitivity

High x (anti)- quarks

p

р

q

C

- Sensitivity to BSM heavy W boson through excess in high mass lv or jj already limited by PDFs through background prediction (high x valence quark and antiquark entering Drell-Yan)

Many more examples in recent '*Report on the Physics at the HL-LHC* ...', ATLAS and CMS, CERN-LPCC-2019-01 ... much of the LHC search programme will become limited by high x parton density uncertainties as time progresses

Higgs X-Section / Coupling PDF Uncertainties

... much of Higgs sector becomes PDF limited in HL-LHC era ... (x~10⁻²)

Theoretical Uncertainties

After N³LO calculation of gluon-fusion Higgs cross section:

... largest sources of unertainty:

- PDFs
- -`N3LO PDFs'

- α_s Anastasiou et al [1503.06056]

Projected Experimental Uncertainties

ATLAS Simulation √s = 14 TeV: [Ldt=300 fb⁻¹; [Ldt=3000 fb⁻¹] Ldt=300 fb⁻¹ extrapolated from 7+8 TeV H→µµ ttH,H→μμ VBF, $H \rightarrow \tau \tau$ $H \rightarrow ZZ$ VBF.H→ WW $H \rightarrow WW$ $VH,H\rightarrow\gamma\gamma$ $ttH,H\rightarrow\gamma\gamma$ VBF, $H \rightarrow \gamma \gamma$ H→γγ (+j) Η→γγ 0.2 0.4 0.6 0.8 0 [Dashed regions = scale Δμ μ & PDF contributions

11

Why not constrain PDFs with LHC Data?...

- Many pp processes are sensitive to PDFs ...
- Electroweak gauge boson production
- Drell Yan (away from Z pole)
- High pT jet production
- Top Quarks
- Direct Photons

р

p

W,Z

Serious ongoing programme to better constrain the PDFs with LHC data

p g q q q q q

e.g. LHC Jet Data and the Gluon

- Rates very high
- In principle sensitive to highest x
- Limited experimentally by jet Energy Scale Uncty
- Limited theoretically by no NNLO corrections, underlying event ...

Influence of LHC jets relative to HERA-only is to make gluon slightly harder and to reduce its uncertainty somewhat

... large uncertainties remain on the high x gluon, particularly at modest scales

Quantitative Summary of LHC Impact

DF3.1 NNLO, Q = 100 GeV

NNPDE3 1

Theoretical Limitations:

- Hadronisation and Underlying Event
- Missing higher orders (QCD & EW)
- Large logs needing resummations
- Experimental Limitations: Systematics (energy scale ...)
 - Correlations between measurements

NNPDF3.1 includes LHC W,Z, jets,top

PDFs with v without including LHC data

Some impact, but not transformational

Some deviations ... 14

Asking the Question the Other Way Around

A more philosophical point ...

 → You can't use the same data to constrain parton densities and to discover new physics through deviations from predictions using those PDFs
 → New physics likely to be seen in tension between predictions with non-LHC PDFs and LHC data ¹⁵

PDFs and the EIC

Approximate EIC coverage.

- High lumi \rightarrow high x precision improved over HERA

- Some proton targets \rightarrow avoid nuclear corrections

- Deuterons with and without spectator proton tagging \rightarrow d/u unfolding with redundancy
- Nuclei \rightarrow understanding of nuclear effects (also for FT)
- Precision tracking, performant particle ID, charged current scattering \rightarrow full flavor decomposition

... first studies have been performed ...

Recent dedicated High x Study

- Simulated inclusive high x EIC data $[E_e = 10 \text{ GeV}, E_p = 100 \text{ GeV}, 100 \text{ fb}^{-1}]$

- Proton,
- Neutron from deuterons with tagged protons
- Deuterons directly (p+n)

- CTEQ-Jlab ("CJ15") fitting framework

CJ15+F2p+F2ntag

[A. Accardi et al]

CJ15+F2p+F2ntag+F2d

17

High x results

- d quark precision reaches % level up to x~0.6 ... resolves long-standing mystery of d/u as x \rightarrow 1

- D/(p+n) in a single experiment is starting point to understand nuclear corrections.

- Gluon improvement too, but more modest (high x scaling violations driven by $q \rightarrow qg$, not $g \rightarrow qqbar$?)

... motivation for other gluon-sensitive observables (jets, charm...)

PDFs from Charm at EIC

- Charm cross sections sensitive to
- gluon density through boson-gluon fusion
- Also addresses question of intrinsic charm

: Excellent charm identification (exclusive D-

meson reconstruction or inclusive secondary vertex tagging)

[F2(charm) = charm contribution to F2]

With sufficient lumi, high x charm can be tackled in ep at EIC [impact on gluon density to be confirmed]

Charm and the Nuclear Gluon Density

Ratio of charm cross section in eA / ep has a poweful impact on nuclear gluon density particularly at high x

Charm in Charged Current ... tackles long-standing w

1.9 GeV² 1.6 1.4 x(s+<u>s</u>)(x, Q^z 1.2 issue of strange density 0.8 0.6 0.4 0.2

10

1.8

S

х

10-1

s+8 distribution at Q² = 1.9 GeV²

Low x: the "Pathological" Gluon

Fraction of Overall Proton Momentum Carried by Parton

New low x gluon-driven dynamics?

- Recombination $(gg \rightarrow g)$?
- Resummation?
- Just N(N)LO DGLAP + HT?
 →towards new high density, small coupling, parton regime with non-linear parton evolution (e.g. CGC)?
 → HERA inconclusive

Constraints from LHC so far?...

- Gluon density poorly known below x~10⁻³
- LHC has limited impact in standard PDF sets
 - \rightarrow more focused on high / medium x
 - \rightarrow Lack of good observales (maybe UPCs...)

Accessing High Density Low x Partons at EIC

- 1) Use nuclear target
- → Overlap many sources; enhance density ~ $A^{1/3}$ ~ 6 for Au ... $\int_{A_{QCD}}^{HERA (ep)}$ [EIC may get to region where saturation effects expected up to sclaes $Q_s^2 \sim 2 \text{ GeV}^2$]

2) Use diffractive observables

 \rightarrow [Low-Nussinov] interpretation as 2 gluon exchange enhances sensitivity to low x gluon (at least for exclusives)

 \rightarrow 4-momentum transfer squared (t) dependence varies impact parameter and scans target transversely

22

Low x PDFs from eA at EIC

[E. Aschenauer et al, PRD96, 114005 (2017)]

Coverage may extend to $x \sim 10^{-4}$ for $Q^2 > 1 \text{ GeV}^2$ EIC inclusive and charm pseudodata at various \sqrt{s} included in EPPS16 nuclear PDF fitting framework

→ transformational impact on nuclear modification ratio

Low x Dynamics from Diffraction in early EIC data: one example

Unfolding nuclear effects
 from new low x parton
 dynamics probably requires
 multiple observables
 ... eg diffractive to inclusive
 ratio in ep and eA ...

Summary

- Unpolarised collinear PDFs maybe not the most interesting way to characterise proton structure (see later talks), but highly relevant to high scale LHC physics

 \rightarrow PDF uncertainties limit LHC searches for new heavy particles, dominate theory uncertainties in Higgs physics and limit precision measurements such as M_W

- A high lumi EIC can have a significant impact on LHC at large and intermediate x and in flavor decomposition, as well as on fundamental questions in nuclear / low x PDFs

> → First studies shown here - much more can be done → Lots of uncovered topics (diffraction, jets, multi-parton interactions, pion, kaon structure ...)

[Thanks to Alberto Accardi, Elke Aschenauer, Mandy Cooper-Sarkar, Rolf Ent, Yuliya Furletova, Tim Hobbs, Thomas Ulrich, Rik Yoshida (and many others I forgot)]