Dynamic Aperture in Electron and Ion Colliders

Yunhai Cai SLAC National Accelerator Laboratory

EIC User Group Meeting 22-26, July 2019, Paris

Outline

- Introduction
- Version 5.0 lattice of the electron ring in ERHIC
 - Evaluation
 - Requirements
- Simplified lattices
 - 60° cells of six arcs and six straights
 - Replace a straight with a low-beta interaction region
- Chromatic compensation
 - Global scheme
 - Semi-Local scheme
- Conclusion

Parameters	Units	PEP-II HER	JLEIC ERING	ERHIC ERING
Energy	GeV	9	5	10
Circumference	m	2200	2256	3834
Beam current	A	2	3	2.5
Emittance	nm	47.5	4.6	24.0
Energy spread	10-4	6.0	4.6	5.5
Tunes		24.57/23.64	57.22/50.16	45.12/36.10
Chromaticity		43/57	125/129	83/91
IP betas	m	0.50/0.015	0.10/0.02	0.42/0.05
L*	m	0.9	3.0	5.3

PEP-II achieved luminosity is 1.2x10³⁴ cm⁻²s⁻¹

Beam-Beam Interaction in PEP-II

Data was taken in 24 hour period: between 21-NOV-2003 18:49:00 to 22-NOV-2003 18:49:00. The number of bunch was 1230 and bunch spacing was every two buckets. The ratio of currents in the measurement was not fixed as a constant but the agreements are surprisingly good.

e+ Distributions with Beam-Beam Interaction

The distributions are averaged after 40,000 turns to improve the statistics.

Contours started at value of peak/sqrt(e) and spaced in e. Labels are in σ of the initial distribution.

The core distribution is not disturbed much by the nonlinearity in the ring while the tail is strongly effected.

With a linear matrix or 8th order Taylor map (v_x ⁺=0.5125). Nonlinear map is important because it defines the dynamic aperture.

RROOKH

Persistence

The higher order perturbation distorted the contours but not break them when the tune is sufficiently away from the resonances, Yunhai Cai, PRAB, 21, 054002 (2018)

Electron Ring Lattice

Version 5.0, Tepikian

Layout

Dynamic Aperture of the Design Lattice

BROOKHAVEN NATIONAL LABORATOR

- Reference emittances
 - horizontal 24 nm
 - vertical 12 nm
- Synchrotron oscillation: on

Momentum aperture is 0.3% consistent with momentum bandwidth

Yunhai Cai, EIC User Group Meeting, Paris

Chromatic Optics at Interaction Point

η' β**[**m] η[**m**] α ν order: 0 4.196942e-01 7.887650e-05 4.511995e+01 -2.749660e-07 -4.306417e-05 4.999994e-02 -3.011440e-05 3.609997e+01 5.122667e-12 1.409070e-09 order: 1 9.893213e-01 -6.245835e+01 -1.318125e+01 1.584850e+00 -2.436665e+00 -9.968913e+00 -6.445416e+01 9.800348e-01 -6.596413e-01 3.116056e+00 order: 2 8.755505e+03 -4.907347e+03 -1.640191e+03-6.116449e+02 -6.788702e+02 1.495831e+03 1.287648e+04 -2.702967e+03 2.520371e+02 1.214073e+03 order: 3 -1.135232e+06 1.414246e+04 1.384366e+05 1.186107e+05 3.108798e+05 -4.281689e+05 -7.511489e+05 1.238044e+05-6.923175e+04 8.527815e+05

Second- and third- order chromaticity are huge

Yunhai Cai, Nucl. Instrum. Methods Phys. Res. Sect. A 707 (2015) 172-181

• Differential algebra

- Symplectic maps
- Accurate derivatives
- Arbitrary order
- Include coupling
- Written in C++

SLAC

10

Assumptions

Touschek Lifetime

- 10% coupling
- o Beam current: 2.5 A
- o 1320 Bunches
- o Bunch length: 7.36 mm
- o Lattice V 5.0
- Momentum Acceptance
 - ✤ Quantum: 0.33%
 - ✤ Injection: 1%

SLAC

Storage Ring with 60° Phase Advance in Arcs

BROOKHAVEN NATIONAL LABORATOR

K.L. Brown & R.V. Servranckx *Nucl. Inst. Meth., A258:480–502, 1987*

Nucl. Inst. Meth., A645:168–174, 2011

Interaction Region

BROOKHAVEN NATIONAL LABORATORY

1.2

D (m)

Sextupole strengths

with a simplified interaction region

Recipe

- Reflection Symmetry
- Three families/plane in arc
- All members in phase: 180° or 360° in terms of beta beating
- Zero out high-order derivatives of tune with respect to δ up to 6th order in each plane using twelve sextupole families
- High-precision derivatives computed using differential algebra
- Find solution using the Levenberg-Marquardt algorithm
- Perturbative approach

Correction of Chromatic Betatron Tunes

BROOKHA NATIONAL LABO

SLAC

Two families of sextupoles

with a simplified interaction region

Improvement of Chromatic Beta Beating

BROOKHAVEN NATIONAL LABORATOR

with a simplified interaction region

Improvement of Momentum Aperture

BROOKHA NATIONAL LABORATOR'

Twelve families of sextupoles

With a simplified interaction region, 1% momentum acceptance is within reach.

2000000 $K_{2}[m^{-3}]$ Ο -1 333335 -2 -3 Ο s[m]

Nelder-Mead algorithm, slow converge taking 8 days on iMac

Yunhai Cai, EIC User Group Meeting, Paris

з

SLAC

Improvement of Momentum Aperture

BROOKHAVEN NATIONAL LABORATORY

Momentum aperture increases from 0.3% to 0.5% but smaller than bandwidth

Synchro-Betatron Resonance

SLAC

Resonance: v_x -2 v_s =45 is a limiting factor

Semi-Local Chromatic Compensation for Design Lattice V 5.0

Procedure

- 1) Phase trombones in straights and between the final doublets in the arc sextupoles to minimize the second-order chromaticity
- 2) Three families/plane in the adjacent arcs to zero out chromaticity up to the third order
- 3) Split the strongest one into two families and zero out up to the fourth order
- 4) Add two families in the four remaining arcs and zero out up to the fifth order
- 5) Split two families to four families in the far arcs and zero out up to the sixth order

The low-order solutions are found using the Nelder-Mead algorithm while the high-order on with the Levenberg-Marquardt algorithm

Strengths of twelve families of sextupoles

Improvement of Momentum Aperture (Design Lattice V 5.0) NATIONAL LABOR SLAC

Momentum Aperture

Momentum aperture increases from 0.3% to 0.8%

Tunes vs. $\delta = (p-p_0)/p_0$

Chromatic coupling resonance is seen

BROOKHA

Improvement of Chromatic Beta Beating

BROOKHAVEN NATIONAL LABORATOR

Design Lattice V 5.0

Conclusions

- Accurate and fast computation of chromatic optics is developed, allowing an arbitrary order of $\delta = (p-p_0)/p_0$
- Two optimizing algorithms, namely the Nelder-Mead and Levenberg-Marquardt, are implemented for chromatic compensation
- Dynamic aperture for is 20 σ in the horizontal plane and increases from 20 σ to 35 σ in the vertical plane
- Chromaticity up to sixth-order of δ is well compensated and controlled
- Momentum aperture with synchrotron oscillation increases from 0.3% to 0.8%. 1% goal seems achievable but remains as challenging

More work to be done

- Implement the phase trombones (Tepikian will visit SLAC August)
- Two interaction regions

SLAC: Yuri Nosochkov

BNL:

Yongjun Li, Christoph Montag, Steven Tepikian, Ferdinard Willeke