Revisiting RGEs for general gauge theories

Kseniia Svirina

In collaboration with
Ingo Schienbein, Florian Staub, Tom Steudtner

23-25 January 2019
LPC Clermont, France
Renormalization Group Equations (RGEs) are important as they provide the link between the physics at different energy scales.

The 2-loop RGEs for general gauge theories have been known for a long time.
Renormalization Group Equations (RGEs) are important as they provide the link between the physics at different energy scales.

The 2-loop RGEs for general gauge theories have been known for a long time.

Nevertheless, we have revisited the derivation of the RGEs and identified mistakes in the literature, related to
Renormalization Group Equations (RGEs) are important as they provide the link between the physics at different energy scales.

The 2-loop RGEs for general gauge theories have been known for a long time.

Nevertheless, we have revisited the derivation of the RGEs and identified mistakes in the literature, related to

Inaccurate use of the

Dummy field method

for the β-functions for dimensionful parameters
Renormalization Group Equations (RGEs) are important as they provide the link between the physics at different energy scales.

The 2-loop RGEs for general gauge theories have been known for a long time.

Nevertheless, we have revisited the derivation of the RGEs and identified mistakes in the literature, related to

- Inaccurate use of the **Dummy field method** for the β-functions for dimensionful parameters
- Assumption of a **diagonal wave-function renormalization** (not appropriate for models with mixing in the scalar sector)
Renormalization Group Equations (RGEs) are important as they provide the link between the physics at different energy scales.

The 2-loop RGEs for general gauge theories have been known for a long time.

Nevertheless, we have revisited the derivation of the RGEs and identified mistakes in the literature, related to

- Inaccurate use of the **Dummy field method** for the β-functions for dimensionful parameters
- Assumption of a diagonal wave-function renormalization (not appropriate for models with mixing in the scalar sector)

We have studied both problems, corrected the expressions and provided detailed explanations.

RGEs in a general gauge theory

- Lagrangian depends on couplings
- After renormalization, these couplings depend on the energy scale (running parameters)
- This dependence is described by the β-function of the coupling

The β-function of x_k:

\[
\mu \frac{dx_k}{d\mu} \equiv \beta_{x_k}
\]

- in \overline{MS} scheme (dimensional regularization with modified minimal subtraction)

μ - is an arbitrary mass scale parameter
RGEs in a general gauge theory

The Lagrangian for a general renormalizable gauge theory:

Gauge fields

\[V^A_\mu(x) \quad (A = 1, \ldots, d) \]

of a compact simple group \(G \) of dim. \(d \).

Real scalar fields

\[\phi_a(x) \quad (a = 1, \ldots, N_\phi) \]

transform under a reducible rep. of \(G \) with generators \(\Theta^A_{ab} \).

Complex fermion fields

\[\psi_j(x) \quad (j = 1, \ldots, N_\psi) \]

transform under a reducible rep. of \(G \) with generators \(t^A_{jk} \).

\[\mathcal{L} = \mathcal{L}_0 + \mathcal{L}_1 + (\text{gauge fixing + ghost terms}), \]
RGEs in a general gauge theory

The Lagrangian for a general renormalizable gauge theory:

\[\mathcal{L} = \mathcal{L}_0 + \mathcal{L}_1 + \text{(gauge fixing + ghost terms)}, \]

where

\[\mathcal{L}_0 = -\frac{1}{4} F_{\mu\nu}^A F_{\mu\nu}^A + \frac{1}{2} D_{\mu} \phi_{a} D_{\mu} \phi_{a} + i \psi_{j}^{\dagger} \sigma_{\mu} D_{\mu} \psi_{j} - \frac{1}{2} \left(Y_{jk}^{a} \psi_{j} \phi_{a} + Y_{jk}^{a\dagger} \phi_{a} \psi_{j} \right) - \frac{1}{4!} \lambda_{abcd} \phi_{a} \phi_{b} \phi_{c} \phi_{d}, \]

– contains no dimensional parameters

and

\[\mathcal{L}_1 = -\frac{1}{2} \left[(m_{f})_{jk} \psi_{j} \phi_{k} + (m_{f})_{jk}^{*} \phi_{k} \psi_{j}^{\dagger} \right] - \frac{m_{ab}^{2}}{2!} \phi_{a} \phi_{b} - \frac{h_{abc}}{3!} \phi_{a} \phi_{b} \phi_{c}. \]

– includes all terms with dimensional parameters.
RGEs in a general gauge theory

The Lagrangian for a general renormalizable gauge theory:

\[\mathcal{L} = \mathcal{L}_0 + \mathcal{L}_1 + (\text{gauge fixing + ghost terms}), \]

where

- **Gauge fields**

 \[V^A_\mu(x) \ (A = 1, \ldots d) \]

 of a compact simple group \(G \) of dim. \(d \).

- **Real scalar fields**

 \[\phi_a(x) \ (a = 1, \ldots N_\phi) \]

 transform under a reducible rep. of \(G \) with generators \(\Theta^A_{ab} \).

- **Complex fermion fields**

 \[\psi_j(x) \ (j = 1, \ldots N_\psi) \]

 transform under a reducible rep. of \(G \) with generators \(t^A_{jk} \).

- **Dimensionless parameters**

\[\mathcal{L}_0 = -\frac{1}{4} F^A_{\mu\nu} F^{A\mu\nu} + \frac{1}{2} D_\mu \phi_a D^\mu \phi_a + i \psi_j^\dagger \sigma^\mu D_\mu \psi_j - \frac{1}{2} \left(Y^a_{jk} \psi_j^\dagger \psi_k \phi_a + Y^{a*}_{jk} \psi_j^\dagger \psi_k \phi_a \right) - \frac{1}{4!} \lambda_{abcd} \phi_a \phi_b \phi_c \phi_d, \]

- contains no dimensional parameters

and

- **Dimensionful parameters**

\[\mathcal{L}_1 = -\frac{1}{2} \left[(m_f)_{jk} \psi_j^\dagger \psi_k + (m^*_f)_{jk} \psi_j^\dagger \psi_k \right] - \frac{m^2_{ab}}{2!} \phi_a \phi_b - \frac{h_{abc}}{3!} \phi_a \phi_b \phi_c. \]

- includes all terms with dimensional parameters.
RGEs in a general gauge theory

The Lagrangian for a general renormalizable gauge theory:

- **Gauge fields**:
 \[V_\mu^A(x) \quad (A = 1, \ldots d) \]
 of a compact simple group \(G \) of dim. \(d \).

- **Real scalar fields**:
 \[\phi_a(x) \quad (a = 1, \ldots N_\phi) \]
 transform under a reducible rep. of \(G \) with generators \(\Theta^A_{ab} \).

- **Complex fermion fields**:
 \[\psi_j(x) \quad (j = 1, \ldots N_\psi) \]
 transform under a reducible rep. of \(G \) with generators \(t^A_{jk} \).

\[
\mathcal{L} = \mathcal{L}_0 + \mathcal{L}_1 + (\text{gauge fixing + ghost terms}),
\]

where

\[
\mathcal{L}_0 = -\frac{1}{4} F_\mu^A F^{\mu A} + \frac{1}{2} D_\mu \phi_a D^\mu \phi_a + i \psi_j^\dagger \sigma^\mu D_\mu \psi_j - \frac{1}{2} \left(Y^a_{jk} \psi_j \psi_k \phi_a + Y^{a*}_{jk} \psi_j^\dagger \psi_k \phi_a \right) - \frac{1}{4!} \lambda_{abcd} \phi_a \phi_b \phi_c \phi_d,
\]

- contains no dimensional parameters

and

\[
\mathcal{L}_1 = -\frac{1}{2} \left[(m_f)_{jk} \psi_j \psi_k + (m_f^*)_{jk} \psi_j^\dagger \psi_k \right] - \frac{m^2_{ab}}{2!} \phi_a \phi_b - \frac{h_{abc}}{3!} \phi_a \phi_b \phi_c.
\]

- includes all terms with dimensional parameters.

RGEs in a general gauge theory

The Lagrangian for a general renormalizable gauge theory:

\[\mathcal{L} = \mathcal{L}_0 + \mathcal{L}_1 + \text{(gauge fixing + ghost terms)}, \]

where

\[\mathcal{L}_0 = -\frac{1}{4} F^\alpha_{\mu\nu} F_{\mu\nu}^\alpha + \frac{1}{2} D^\mu \phi_a D_\mu \phi_a + i \psi_j^\dagger \sigma^\mu D_\mu \psi_j \]
\[- \frac{1}{2} \left(Y^a_{jk} \psi_j \bar{\psi}_k \phi_a + Y^a_{jk} \bar{\psi}_j \psi_k \phi_a \right) - \frac{1}{4!} \lambda_{abcd} \phi_a \phi_b \phi_c \phi_d, \]

- contains no dimensional parameters

and

\[\mathcal{L}_1 = -\frac{1}{2} \left[(m_f)_{jk} \psi_j \bar{\psi}_k + (m_f)^*_{jk} \bar{\psi}_j \psi_k \right] - \frac{m_{ab}^2}{2!} \phi_a \phi_b - \frac{h_{abc}}{3!} \phi_a \phi_b \phi_c. \]

- includes all terms with dimensional parameters.

Gauge fields

\[V^A_\mu(x) \quad (A = 1, \ldots d) \]
of a compact simple group \(G \) of dim. \(d \).

Real scalar fields

\[\phi_a(x) \quad (a = 1, \ldots N_\phi) \]
transform under a reducible rep. of \(G \) with generators \(\Theta^{ab}_{cd} \).

Complex fermion fields

\[\psi_j(x) \quad (j = 1, \ldots N_\psi) \]
transform under a reducible rep. of \(G \) with generators \(t^{A}_{jk} \).

Dimensionless parameters

Dimensionful parameters

The dummy field method

The idea: we introduced a scalar “dummy field” – non-propagating, with no gauge interactions, and rewrote the dimensionless part of the Lagrangian

\[D_\mu \phi_d = 0 \]

\[\mathcal{L}_0 \supset -\frac{1}{2} \left(Y_{jk} \psi_j \phi_k \phi_d + h.c. \right) - 6 \sum_{a,b=1}^{N_\phi} \frac{1}{4!} \lambda_{ab\hat{d}\hat{d}} \phi_a \phi_b \phi_d \phi_d - 4 \sum_{a,b,c=1}^{N_\phi} \frac{1}{4!} \lambda_{abcd} \phi_a \phi_b \phi_c \phi_d \]

Fermion mass

\[Y_{jk} \phi_d = (m_f)_{jk} \]

Scalar mass

\[m_{ab}^2 \phi_a \phi_b \]

Trilinear coupling

\[h_{abc} \phi_a \phi_b \phi_c \]

Yukawa coupling

\[\lambda_{ab\hat{d}\hat{d}} \phi_a \phi_b \phi_d \phi_d = 2m_{ab}^2 \]

Quartic coupling

\[\lambda_{abcd} \phi_a \phi_b \phi_c \phi_d = h_{abc} \]

The dummy field method

Example. The β-function of the fermion mass term can be obtained from the expressions for the Yukawa couplings, using the following mappings:

\[
a \rightarrow \hat{d}, \quad Y^a \rightarrow Y^\hat{d} \rightarrow m_f, \quad Y^{\dagger a} \rightarrow Y^{\dagger \hat{d}} \rightarrow m_f^\dagger, \quad \lambda_{abcd} \rightarrow \lambda_{\hat{d}bcd} \rightarrow h_{bcd}
\]

1-loop β-function for the Yukawa couplings:

\[
\beta^I_a = \frac{1}{2} \left[Y_2^+(F)Y^a + Y^a Y_2(F) \right] + 2Y^b Y^{+a} Y^b + 2\kappa Y^b Y_2^{ab}(S) - 3g^2\{C_2(F), Y^a\},
\]
The dummy field method

Example. The β-function of the fermion mass term can be obtained from the expressions for the Yukawa couplings, using the following mappings:

$$a \rightarrow \hat{d}, \ Y^a \rightarrow Y^d \rightarrow m_f, \ Y^{+a} \rightarrow Y^{+d} \rightarrow m_f^+, \ \lambda_{abcd} \rightarrow \lambda_{\hat{d}bcd} \rightarrow h_{bcd}$$

1-loop β-function for the Yukawa couplings:

$$\beta_a^I = \frac{1}{2} \left[Y_2^+(F)Y^a + Y^aY_2(F) \right] + 2Y^bY^{+a}Y^b + 2\kappa Y^bY_2^{ab}(S) - 3g^2\{C_2(F), Y^a\}$$

Diagram:

$$Y_2^+(F)Y^a + Y^aY_2(F) \rightarrow Y_2^+(F)m_f + m_fY_2(F)$$

$$\{C_2(F), Y^a\} \rightarrow \{C_2(F), m_f\}$$
The dummy field method

Example. The β-function of the fermion mass term can be obtained from the expressions for the Yukawa couplings, using the following mappings:

\[a \rightarrow \hat{d}, \quad Y^a \rightarrow Y^{\hat{d}} \rightarrow m_f, \quad Y^{\dagger a} \rightarrow Y^{\dagger \hat{d}} \rightarrow m_f^{\dagger}, \quad \lambda_{abcd} \rightarrow \lambda_{\hat{d}bcd} \rightarrow h_{bcd} \]

1-loop β-function for the Yukawa couplings:

\[
\beta_a^I = \frac{1}{2} \left[Y_2^{\dagger} (F) Y^a + Y^a Y_2 (F) \right] + 2 Y^b Y^{\dagger a} Y^b + 2 \kappa Y^b Y_2^{ab} (S) - 3 g^2 \{ C_2 (F), Y^a \},
\]
Example. The β-function of the fermion mass term can be obtained from the expressions for the Yukawa couplings, using the following mappings:

$$a \rightarrow \hat{a}, \ Y^a \rightarrow Y^{\hat{a}} \rightarrow m_f, \ Y^{\dagger a} \rightarrow Y^{\dagger \hat{a}} \rightarrow m_f^{\dagger}, \ \lambda_{abcd} \rightarrow \lambda_{\hat{a}bcd} \rightarrow h_{bcd}$$

1-loop β-function for the Yukawa couplings:

$$\beta^I_a = \frac{1}{2} \left[Y_2^{\dagger}(F)Y^a + Y^aY_2(F) \right] + 2Y^bY^{\dagger a}Y^b + 2\kappa Y^bY_2^{ab}(S) - 3g^2\{C_2(F), Y^a\},$$

$$Y^bY_2^{ab}(S) \rightarrow 0$$

$$Y^bY^{\dagger a}Y^b \rightarrow Y^b m_f^{\dagger} Y^b$$
The dummy field method

Example. The β-function of the fermion mass term can be obtained from the expressions for the Yukawa couplings, using the following mappings

$$a \rightarrow \hat{a}, \ Y^a \rightarrow Y^{\hat{a}} \rightarrow m_f, \ Y^\dagger a \rightarrow Y^{\dagger \hat{a}} \rightarrow m^\dagger_f, \ \lambda_{abcd} \rightarrow \lambda_{\hat{a}bcd} \rightarrow h_{bcd}$$

1-loop β-function for the Yukawa couplings:

$$\beta^I_a = \frac{1}{2} \left[Y_2^\dagger(F)Y^a + Y^a Y_2(F) \right] + 2Y^b Y^\dagger a Y^b + 2\kappa Y^b Y_2^{ab}(S) - 3g^2 \{C_2(F), Y^a\},$$

Example. The β-function of the fermion mass term can be obtained from the expressions for the Yukawa couplings, using the following mappings:

\[a \rightarrow \hat{d}, \quad Y^a \rightarrow Y^\hat{d} \rightarrow m_f, \quad Y^\dagger a \rightarrow Y^\dagger \hat{d} \rightarrow m_f^\dagger, \quad \lambda_{abcd} \rightarrow \lambda_{\hat{d}bcd} \rightarrow h_{bcd} \]

1-loop β-function for the Yukawa couplings:

\[\beta^I_a = \frac{1}{2} \left[Y_2^+(F)Y^a + Y^a Y_2(F) \right] + 2Y^bY^{+a}Y^b + 2\kappa Y^bY_2^{ab}(S) - 3g^2\{C_2(F), Y^a\}, \]

1-loop β-function for the fermion mass:

\[\beta^I_{m_f} = \frac{1}{2} \left[Y_2^+(F)m_f + m_f Y_2(F) \right] + 2Y^b m_f^\dagger Y^b - 3g^2\{C_2(F), m_f\}. \]
The dummy field method

Example. The β-function of the fermion mass term can be obtained from the expressions for the Yukawa couplings, using the following mappings

\[a \rightarrow \hat{a}, \ Y^{a} \rightarrow Y^{\hat{a}} \rightarrow m_{f}, \ Y^{+a} \rightarrow Y^{+\hat{a}} \rightarrow m_{f}^{+}, \ \lambda_{abcd} \rightarrow \lambda_{\hat{a}bcd} \rightarrow h_{bcd} \]

1-loop β-function for the Yukawa couplings:

\[\beta_{a}^{I} = \frac{1}{2} \left[Y_{2}^{+}(F)Y^{a} + Y^{a}Y_{2}(F) \right] + 2Y^{b}Y^{+a}Y^{b} + 2\kappa Y^{b}Y_{2}^{ab}(S) - 3g^{2}\{C_{2}(F), Y^{a}\}, \]

1-loop β-function for the fermion mass:

\[\beta_{m_{f}}^{I} = \frac{1}{2} \left[Y_{2}^{+}(F)m_{f} + m_{f}Y_{2}(F) \right] + 2Y^{b}m_{f}^{+}Y^{b} - 3g^{2}\{C_{2}(F), m_{f}\}. \]

In this manner, the β-functions for the following parameters have been obtained:

Fermion mass:	\(\beta_{m_{f}}^{1\text{-loop}}, \beta_{m_{f}}^{2\text{-loop}} \)	out of	\(\beta_{a}^{1\text{-loop}}, \beta_{a}^{2\text{-loop}} \) (Yukawa c.)
Trilinear sc.c.:	\(\beta_{h_{abc}}^{1\text{-loop}}, \beta_{h_{abc}}^{2\text{-loop}} \)	out of	\(\beta_{\lambda_{abcd}}^{1\text{-loop}}, \beta_{\lambda_{abcd}}^{2\text{-loop}} \) (quartic sc.c.)
Scalar mass sq.:	\(\beta_{m_{ab}^{2}}^{1\text{-loop}}, \beta_{m_{ab}^{2}}^{2\text{-loop}} \)		
The dummy field method

Example. The β-function of the fermion mass term can be obtained from the expressions for the Yukawa couplings, using the following mappings:

$$a \rightarrow \hat{a}, \ Y^a \rightarrow Y^\hat{a} \rightarrow m_f, \ Y^{\hat{a}} \rightarrow Y^{\hat{d}} \rightarrow m^\dagger_f, \ \lambda_{abcd} \rightarrow \lambda_{\hat{d}bcd} \rightarrow h_{bcd}$$

1-loop β-function for the Yukawa couplings:

$$\beta^I_a = \frac{1}{2} \left[Y^a_2(F) Y^a + Y^a Y_2(F) \right] + 2 Y^b Y^a Y^b + 2 \kappa Y^b Y_2^{ab}(S) - 3 g^2 \{ C_2(F), Y^a \},$$

1-loop β-function for the fermion mass:

$$\beta^I_{m_f} = \frac{1}{2} \left[Y^a_2(F) m_f + m_f Y_2(F) \right] + 2 Y^b m_f Y^b - 3 g^2 \{ C_2(F), m_f \}.$$

In this manner, the β-functions for the following parameters have been obtained:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>β-functions</th>
<th>β-functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fermion mass:</td>
<td>$\beta^{1-loop}{m_f}, \beta^{2-loop}{m_f}$</td>
<td>out of $\beta^{1-loop}_a, \beta^{2-loop}_a$ (Yukawa c.)</td>
</tr>
<tr>
<td>Trilinear sc.c.:</td>
<td>$\beta^{1-loop}{h{abc}}, \beta^{2-loop}{h{abc}}$</td>
<td>out of $\beta^{1-loop}{\lambda{abcd}}, \beta^{2-loop}{\lambda{abcd}}$ (quartic sc.c.)</td>
</tr>
<tr>
<td>Scalar mass sq.:</td>
<td>$\beta^{1-loop}{m^2{ab}}, \beta^{2-loop}{m^2{ab}}$</td>
<td></td>
</tr>
</tbody>
</table>

We’ve reconsidered diagrammatically and corrected
The dummy field method (summarized)

The dummy field method allows to derive the β-functions for dimensionful parameters out of those for the dimensionless parameters.

1. Consider the Lagrangian in the presence of the same particle content + 1 extra scalar dummy field.
2. Write down the β-functions for the dimensionless parameters.
3. Substitute:
 \[Y^d_{jk} = (m_f)_{jk}, \quad \lambda_{abcd} = 2m^2_{ab}, \quad \lambda_{abcd} = h_{abc} \]
4. **Keep in mind** that the dummy field – is a real scalar, non-propagating, with no gauge interactions, i.e.
 - Expressions with 2 identical internal indices
 \(\equiv \text{a propagating dummy field} \) must vanish
 - Vertices \(<\text{gauge boson-dummy scalar}>\) must vanish
 - Tadpole diagrams (if appear) must be also dropped out
5. Enjoy the result: the β-functions for dimensionful parameters.
Numerical impact (I)

Running of fermion mass terms

For example: two heavy top-like states and a real singlet

The discrepancy between the old and new results rapidly grows with increasing Y_T

The running mass μ_T of the vector-like top partners at one- and two-loop level for two different choices of the Yukawa coupling Y_T
Off-diagonal wave function renormalization

The assumption that

$$Y_{2}^{ab}(S) := \frac{1}{2} \text{Tr}[Y^{+a}Y^{b} + Y^{+b}Y^{a}],$$

$$\Lambda_{ab}^{2}(S) := \frac{1}{6} \sum_{c,d,e=1}^{N_{\phi}} \lambda_{acde} \lambda_{bcde},$$

is reasonable only if the considered model does not contain several scalar particles with identical quantum numbers

thus, in general, contributions from off-diagonal wave-function corrections must be included

(affects the results for the dimensionless parameters (the quartic scalar couplings), and the trilinear coupling, the scalar mass)
Off-diagonal wave function renormalization

\[Y_{2}^{ab}(S) := \frac{1}{2} \text{Tr}[Y^{+a}Y^{b} + Y^{+b}Y^{a}] , \]
\[\Lambda_{ab}^{2}(S) := \frac{1}{6} \sum_{c,d,e=1}^{N_{\phi}} \lambda_{acde} \lambda_{bcde} , \]

The assumption that

\[Y_{2}^{ab}(S) = Y_{2}(S) \delta_{ab} \quad \text{and} \quad \Lambda_{ab}^{2}(S) = \Lambda^{2}(S) \delta_{ab} \]

is reasonable only if the considered model does not contain several scalar particles with identical quantum numbers

thus, in general, contributions from off-diagonal wave-function corrections must be included

(affects the results for the dimensionless parameters (the quartic scalar couplings), and the trilinear coupling, the scalar mass)
Numerical impact (II)

Example:
The general Two-Higgs-Doublet-Model type-III

\[V = \sum_{i=1}^{2} m_i^2 |H_i|^2 + \lambda_1 |H_1|^4 + \lambda_2 |H_2|^4 + \lambda_3 |H_1|^2 |H_2|^2 + \lambda_4 |H_2^\dagger H_1|^2 + \left(\frac{1}{2} \lambda_5 (H_2^\dagger H_1) + \lambda_6 |H_1|^2 (H_1^\dagger H_2) + \lambda_7 |H_2|^2 (H_1^\dagger H_2) - M_{12} H_2^\dagger H_1 + h.c. \right) \]

\[\mathcal{L}_Y = - \left(Y_d H_1^\dagger dq + Y_e H_1^\dagger el - Y_u H_2 uq + \epsilon_d H_2^\dagger dq + \epsilon_e H_2^\dagger el - \epsilon_u H_1 uq + h.c. \right) \]

The additional one-loop contributions on the running of the quartic couplings lead to sizeable differences already for \(\epsilon_{U,33} = 0.5 \) and small \(\tan \beta = 2 \)

The running of different quartic couplings in the THDM-III with and without the contributions of off-diagonal wave-function renormalisation.
Conclusions

- We identified various mistakes in the literature for the β-functions of both dimensionless and dimensionful Lagrangian parameters.

- The sources for these discrepancies: incorrect dummy field method application and assumption of a diagonal wave-function renormalization.

- We obtained the correct expressions, cross-checked them and estimated the changes numerically.

- We provided a detailed pedagogic discussion (of the dummy field method, in particular) and summarized all the correct expressions for the β-functions in one paper.

Conclusions

• We identified various mistakes in the literature for the β-functions of both dimensionless and dimensionful Lagrangian parameters

• The sources for these discrepancies: incorrect dummy field method application and assumption of a diagonal wave-function renormalization

• We obtained the correct expressions, cross-checked them and estimated the changes numerically

• We provided a detailed pedagogic discussion (of the dummy field method, in particular) and summarized all the correct expressions for the β-functions in one paper

Thanks for your attention!