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See EPJC (2016) 76:107 for a recent review
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@ No consensus on the mechanism at work in quarkonium production

@ Yet, nearly all approaches assume a factorisation between the production of
the heavy-quark pair, QQ, and its hadronisation into a meson

e Different approaches differ essentially in the treatment of the hadronisation

e 3 fashionable models:

© CorLour EvaAPORATION MODEL: application of quark-hadron duality;
only the invariant mass matters; bleaching via (numerous) soft gluons ?
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@ No consensus on the mechanism at work in quarkonium production

@ Yet, nearly all approaches assume a factorisation between the production of
the heavy-quark pair, QQ, and its hadronisation into a meson

e Different approaches differ essentially in the treatment of the hadronisation

e 3 fashionable models:

© CorLour EvaAPORATION MODEL: application of quark-hadron duality;
only the invariant mass matters; bleaching via (numerous) soft gluons ?
© CoLOUR SINGLET MODEL: hadronisation w/o gluon emission; each emission
costs as(mq) and occurs at short distances; bleaching at the pair-production time
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Approaches to (Inclusive) Quarkonium Production

See EPJC (2016) 76:107 for a recent review

@ No consensus on the mechanism at work in quarkonium production

@ Yet, nearly all approaches assume a factorisation between the production of
the heavy-quark pair, QQ, and its hadronisation into a meson

e Different approaches differ essentially in the treatment of the hadronisation

@ 3 fashionable models:
© CorLour EvaAPORATION MODEL: application of quark-hadron duality;
only the invariant mass matters; bleaching via (numerous) soft gluons ?
© CoLOUR SINGLET MODEL: hadronisation w/o gluon emission; each emission
costs as(mq) and occurs at short distances; bleaching at the pair-production time
© Corour OcTET MECHANISM (encapsulated in NRQCD): higher Fock states of the
mesons taken into account; QQ can be produced in octet states with
different quantum # as the meson; bleaching with semi-soft gluons ?
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CEM vs. CSM vs. COM in a little more details
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CEM vs. CSM vs. COM in a little more details

@ CoLoOUR EVAPORATION MODEL

e any QQ state contributes to a specific quarkonium state
o colourless pair via a simple 1/9 factor

e one non-perturbative parameter per meson, supposedly universal
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CEM vs. CSM vs. COM in a little more details

© CoLOUR EVAPORATION MODEL
any QQ state contributes to a specific quarkonium state
colourless pair via a simple 1/9 factor
one non-perturbative parameter per meson, supposedly universal
COLOUR SINGLET MODEL
colourless pair via colour projection; quantum numbers enforced by spin projection
one non-perturbative parameter per meson but equal to

the Schrodinger wave function at the origin — no free parameter
o this parameter is fixed by the decay width or potential models and

by heavy-quark spin symmetry (HQSS)
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N
CEM vs. CSM vs. COM in a little more details

CoLOUR EVAPORATION MODEL

o
e any QQ state contributes to a specific quarkonium state
o colourless pair via a simple 1/9 factor
o one non-perturbative parameter per meson, supposedly universal
o
]
o

COLOUR SINGLET MODEL

colourless pair via colour projection; quantum numbers enforced by spin projection
one non-perturbative parameter per meson but equal to
the Schrodinger wave function at the origin — no free parameter
o this parameter is fixed by the decay width or potential models and
by heavy-quark spin symmetry (HQSS)
© CoLoUR OCTET MECHANISM

one non-perturbative parameter per Fock State
expansion in v?; series can be truncated
the phenomenology partly depends on this
HQSS relates some non-perturbative parameters to each others and
to a specific quarkonium polarisation
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Part I

Impact of the QCD corrections to the these
models at mid and large Py
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QCD corrections to the CSM for Y at colliders
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QCD corrections to the CSM for Y at colliders

J.Campbell, F. Maltoni, F. Tramontano, Phys.Rev.Lett. 98:252002,2007
P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101, 152001 (2008)
CDF PRL 88 (2002) 161802; LHCb EPJC 72 (2012) 2025
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Attention: the NNLO™ is not a complete NNLO
See a recent study by H.S. Shao juep 1901 (2019) 112
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QCD corrections to the CSM for Y at colliders
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QCD corrections to the CSM for Y at colliders
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|
QCD corrections to the COM - NRQCD
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|
QCD corrections to the COM - NRQCD

@ At LO, Pr spectrum driven by the combination
of 2 CO components : 381[8] vs. IS([)S] & 3P}8]

y data: a little less hard than the blue curve
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of 2 CO components : 381[8] vs. IS([)S] & 3P}8]
@ At NLO, the soft component becomes

harder (Same eﬂeCt as fOr CSM) y data: a little less hard than the blue curve
° 3P}8] becomes as hard as 381[8] and interferes with it; IS([)g] a little softer

@ Due to this interference, it is possible to make the softer IS([)S] dominant yet

with nonzero 3 P][S] and 3 81[8] LDMEs
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QCD corrections to the COM - NRQCD

@ At LO, Pr spectrum driven by the combination
of 2 CO components : 381[8] vs. IS([)S] & 3P}8]
@ At NLO, the soft component becomes
harder (same effect as for CSM) v data: a little less hard than the blue curve

3P}8] becomes as hard as 381[8] and interferes with it; IS([)g] a little softer

@ Due to this interference, it is possible to make the softer IS([)S] dominant yet

with nonzero 3 P][S] and 3 81[8] LDMEs

@ Since the 3 associated LDMEs are fit, the combination at NLO still describes
the data; hence an apparent stability of NRQCD x-section at NLO

What significantly changes is the size of the LDMEs
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QCD corrections to the COM - NRQCD

@ At LO, Pr spectrum driven by the combination
of 2 CO components : 381[8] vs. IS([)S] & 3P}8]
@ At NLO, the soft component becomes
harder (same effect as for CSM) v data: a little less hard than the blue curve

3P}8] becomes as hard as 381[8] and interferes with it; 18([)8] a little softer

@ Due to this interference, it is possible to make the softer IS([)S] dominant yet

with nonzero * P][S] and? 81[8] LDMEs

@ Since the 3 associated LDMEs are fit, the combination at NLO still describes
the data; hence an apparent stability of NRQCD x-section at NLO

e What significantly changes is the size of the LDMEs

@ Polarisation: IS([)S] : unpolarised; 381[8] & 3P][g]: transverse
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-
QCD corrections to the CEM Pr dependence

JPL, H.S. Shao JHEP 1610 (2016) 153
o All possible spin and colour combinations contribute
@ The gluon fragmentation (~ 3'81[8]) dominant at large Pr
@ No reason for a change at NLO. The fit can yield another CEM parameter value
but this will not modify the Pr spectrum

Confirmed by our first NLO study: JPL, H.S. Shao JHEP 1610 (2016) 153
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QCD corrections to the CEM Pr dependence

JPL, H.S. Shao JHEP 1610 (2016) 153

All possible spin and colour combinations contribute

The gluon fragmentation (~ 3'81[8]) dominant at large Pr

@ No reason for a change at NLO. The fit can yield another CEM parameter value
but this will not modify the Py spectrum

Confirmed by our first NLO study: JPL, H.S. Shao JHEP 1610 (2016) 153
Tend to overshoot the y data at large Pr
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QCD corrections to the CEM Pr dependence

JPL, H.S. Shao JHEP 1610 (2016) 153

All possible spin and colour combinations contribute

The gluon fragmentation (~ 3'81[8]) dominant at large Pr

@ No reason for a change at NLO. The fit can yield another CEM parameter value
but this will not modify the Py spectrum

Confirmed by our first NLO study: JPL, H.S. Shao JHEP 1610 (2016) 153
Tend to overshoot the y data at large Pr
The (LO) ICEM not significantly better at large Pt v.Q. Ma, R. Vogt PRD 94 (2016) 114029
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QCD corrections to the CEM Pr dependence

JPL, H.S. Shao JHEP 1610 (2016) 153

All possible spin and colour combinations contribute
The gluon fragmentation (~ 3'81[8]) dominant at large Pr
@ No reason for a change at NLO. The fit can yield another CEM parameter value

but this will not modify the Py spectrum
Confirmed by our first NLO study: JPL, H.S. Shao JHEP 1610 (2016) 153

@ Tend to overshoot the y data at large Pr
e The (LO) ICEM not significantly better at large Pr  v.Q. Ma, R. Vogt PRD 94 (2016) 114029
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The current situation in one slide ...

e Colour-Singlet Model (CSM) long thought to be insufficient
...not as clear now
[large NLO and NNLO correction to the Py spectrum ; but not perfect - need a full NNLO]

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, PRL 101, 152001 (2008); JPL EPJC 61 (2009) 693
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e CSM is doing well for the Pr integrated yield [see later]

S.J. Brodsky, JPL PRD 81 (2010) 051502; Y. Feng, JPL. J.X.Wang Eur.Phys.J. C75 (2015) 313

J.P. Lansberg (IPNO) Quarkonium Production in the LHC era January 25, 2019 9/27



The current situation in one slide ...

e Colour-Singlet Model (CSM) long thought to be insufficient
...not as clear now

[large NLO and NNLO correction to the Py spectrum ; but not perfect - need a full NNLO]

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, PRL 101, 152001 (2008); JPL EPJC 61 (2009) 693

e CSM is doing well for the Pr integrated yield [see later]

S.J. Brodsky, JPL PRD 81 (2010) 051502; Y. Feng, JPL. J.X.Wang Eur.Phys.J. C75 (2015) 313

@ Colour-Octet Mechanism (COM) helps in describing the Pr spectrum

J.P. Lansberg (IPNO) Quarkonium Production in the LHC era January 25, 2019 9/27
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e Colour-Singlet Model (CSM) long thought to be insufficient
...not as clear now

[large NLO and NNLO correction to the Py spectrum ; but not perfect - need a full NNLO]

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, PRL 101, 152001 (2008); JPL EPJC 61 (2009) 693

e CSM is doing well for the Pr integrated yield [see later]

S.J. Brodsky, JPL PRD 81 (2010) 051502; Y. Feng, JPL. J.X.Wang Eur.Phys.J. C75 (2015) 313
@ Colour-Octet Mechanism (COM) helps in describing the Pr spectrum

@ Yet, the COM NLO fits differ a lot in their conclusions owing to their
assumptions (data set, Pt cut, polarisation fitted or not, etc.)
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The current situation in one slide ...

e Colour-Singlet Model (CSM) long thought to be insufficient
...not as clear now
[large NLO and NNLO correction to the Py spectrum ; but not perfect - need a full NNLO]

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, PRL 101, 152001 (2008); JPL EPJC 61 (2009) 693

e CSM is doing well for the Pr integrated yield [see later]

S.J. Brodsky, JPL PRD 81 (2010) 051502; Y. Feng, JPL. J.X.Wang Eur.Phys.J. C75 (2015) 313
@ Colour-Octet Mechanism (COM) helps in describing the Pr spectrum

@ Yet, the COM NLO fits differ a lot in their conclusions owing to their
assumptions (data set, Pt cut, polarisation fitted or not, etc.)

e Colour-Evaporation Mechanism (CEM) <> quark-hadron duality
tends to overshoot the data at large Py - issue shared by some COM fits
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...not as clear now
[large NLO and NNLO correction to the Py spectrum ; but not perfect - need a full NNLO]

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, PRL 101, 152001 (2008); JPL EPJC 61 (2009) 693

e CSM is doing well for the Pr integrated yield [see later]

S.J. Brodsky, JPL PRD 81 (2010) 051502; Y. Feng, JPL. J.X.Wang Eur.Phys.J. C75 (2015) 313

Colour-Octet Mechanism (COM) helps in describing the Py spectrum

Yet, the COM NLO fits differ a lot in their conclusions owing to their
assumptions (data set, Pt cut, polarisation fitted or not, etc.)

Colour-Evaporation Mechanism (CEM) < quark-hadron duality
tends to overshoot the data at large Py - issue shared by some COM fits

All approaches have troubles in describing the polarisation and/or the 7. data
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The current situation in one slide ...

e Colour-Singlet Model (CSM) long thought to be insufficient
...not as clear now
[large NLO and NNLO correction to the Py spectrum ; but not perfect - need a full NNLO]

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, PRL 101, 152001 (2008); JPL EPJC 61 (2009) 693

e CSM is doing well for the Pr integrated yield [see later]

S.J. Brodsky, JPL PRD 81 (2010) 051502; Y. Feng, JPL. J.X.Wang Eur.Phys.J. C75 (2015) 313
Colour-Octet Mechanism (COM) helps in describing the Py spectrum

Yet, the COM NLO fits differ a lot in their conclusions owing to their
assumptions (data set, Pt cut, polarisation fitted or not, etc.)

Colour-Evaporation Mechanism (CEM) < quark-hadron duality
tends to overshoot the data at large Py - issue shared by some COM fits

All approaches have troubles in describing the polarisation and/or the 7. data

o This motivates the study of new observables
which can be more discriminant for specific effects [e.g. associated production]
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The last piece in the puzzle: the 7,
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Data LHCb : EPJC 75 (2015) 311 (plot from H. Hanet al. PRL 114 (2015) 092005)

@ 7. x-section measured by LHCb very well described by the CS contribution (Solid Black Curve)
@ Any CO contribution would create a surplus
@ Even neglecting the dominant CS, this induces constraints on CO J/y LDMEs

via Heavy-Quark Spin Symmetry : (//"’(IS([)S])) = (" (381[8])) <1.46 x 1072 GeV?

[Additional relations: (< (1SL*1)) = (/v (3sl1y) /3 and (e (1PLy) = 3% (/v (3PI)))

J.P. Lansberg (IPNO) Quarkonium Production in the LHC era January 25, 2019 10/ 27



The last piece in the puzzle: the 7,

VS =8TeVand2<y<as T NOPomR
— Sy
——— KS[‘XI e

do/dp; (nb/GeV)

14
pr (GeV)
Data LHCb : EPJC

75 (2015) 311 (plot from H. Hanet al. PRL 114 (2015) 092005)
@ 7. x-section measured by LHCb very well described by the CS contribution (Solid Black Curve)
@ Any CO contribution would create a surplus
@ Even neglecting the dominant CS, this induces constraints on CO J/y LDMEs

via Heavy-Quark Spin Symmetry : (//"’(IS([)S])) = (" (381[8])) <1.46 x 1072 GeV?
@ Rules out the fits yielding the IS(EsJ dominance to get unpolarised yields
@ Even the PKU fit has now troubles to describe CDF polarisation data

[Additional relations: (< (1SL*1)) = (/v (3sl1y) /3 and (e (1PLy) = 3% (/v (3PI)))
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7 X-section measured by LHCb very well described by the CS contribution (Solid Black Curve)
Any CO contribution would create a surplus

Even neglecting the dominant CS, this induces constraints on CO J/y LDMEs
via Heavy-Quark Spin Symmetry : (//"’(IS([)S])) = (" (381[8])) <1.46 x 1072 GeV?
@ Rules out the fits yielding the IS(EsJ dominance to get unpolarised yields
@ Even the PKU fit has now troubles to describe CDF polarisation data
@ Nobody foresaw the impact of measuring #. yields: 3 PRL published right after the LCHb data

came OUt (Hamburg) M. Butenschoen et al. PRL 114 (2015) 092004; (PKU) H. Han ef al. 114 (2015) 092005; (IHEP) H.E. Zhang et al. 114 (2015) 092006

e . 8 8 8 8
[Additional relations: (< (1SL*1)) = (/v (3sl¥1y) /3 and (e (1PLy) = 3 % (/v (3PE))
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e HQSS also relates the LDME:s for the y/(2S) and 7.(2S)

e To avoid the same situation as with the y(2S), we have performed the first
study of its possible prompt production at the LHC

Thanks to existing (LHCb, e*e™) data, we identified tractable branchings on O(107*)

Using HQSS, we evaluated the theory uncertainty on #.(2S) production

From the expected yields, we evaluated the expected experimental uncertainties

A forthcoming (LHCb) measurement would further constrain (or exclude) the
existing NLO y/(2S) LDME fits of Shao et al. and Gong et al. and
confirm/exclude the hypotheses underlying the Bodwin et al. fit.
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The next one : the #.(2S) ?

e To avoid the same situation as with the y(2S), we have performed the first

JPL, H.S. Shao, H.F. Zhang, PLB 786 (2018) 342

e HQSS also relates the LDME:s for the y/(2S) and 7.(2S)

study of its possible prompt production at the LHC
o Thanks to existing (LHCb, e*e™) data, we identified tractable branchings on O(107*)
o Using HQSS, we evaluated the theory uncertainty on #.(2S) production

o From the expected yields, we evaluated the expected experimental uncertainties
o A forthcoming (LHCb) measurement would further constrain (or exclude) the

existing NLO y/(2S) LDME fits of Shao et al. and Gong et al. and

confirm/exclude the hypotheses underlying the

Bodwin et al. fit.
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— Belle-II data on the inclusive y(2S) production will also be crucial
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Part I1I

Why is it equally important to understand
low-P7 production ?
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@ If color is bleaching at short distances (Color Singlet Model), low-Pr
quarkonia can be used to extract the distribution of linearly polarised
gluon in unpolarised protons, hllg (x, k1, 1) D. Boer, C. Pisano. PRD 86 (2012) 094007
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On the importance of understanding low-Pr production

@ If color is bleaching at short distances (Color Singlet Model), low-Pr
quarkonia can be used to extract the distribution of linearly polarised
gluon in unpolarised protons, hllg (x, k1, 1) D. Boer, C. Pisano. PRD 86 (2012) 094007

Different nuclear suppression depending on how the pair hadronizes

J.W. Qiu, J. P. Vary, X.E. Zhang, PRL 88 (2002) 232301

Saturation effects depend on the colour state of the propagating pair

D. Kharzeev, et al. PRL102 (2009) 152301; F. Dominguez, et al. PLB 710 (2012) 182; Y.Q. Ma, et al. PRD 92 (2015) 071901

Most of the proton-nucleus and nucleus-nucleus collision data lie at Pt $ mg

In the QGP, do quarkonia behave more like colorful gluons
or colorless photons ?

If regeneration is at work, how does it happen ? statistically ? according to the
charm-quark distribution in the charmonium (wave-function) ?

@ etc...
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Why is it important to know how low-Pr quarkonia are produced

Also because, some very high Pr quarkonia which we study can be as rare as a
few millionth of the produced quarkonia
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few millionth of the produced quarkonia
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Most probably the production of a Y with Pr = 90 GeV, even also 20 GeV,
has very few things to do with the bulk of Y

J.P. Lansberg (IPNO) Quarkonium Production in the LHC era January 25, 2019 14 /27



Pr-integrated quarkonium production in a few statements

Y. Feng, JPL, J.X. Wang, EPJC (2015) 75:313
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that coming the the Py dependence
[also remember that the CEM has a harder spectrum than the data]

J.P. Lansberg (IPNO) Quarkonium Production in the LHC era January 25, 2019 15 /27



Pr-integrated quarkonium production in a few statements

Y. Feng, JPL, J.X. Wang, EPJC (2015) 75:313
@ CSM works at LO for J/y and ¢(2S) and at LHC energies for Y(1S)
[Y(1S) data undershot at low energies: PDF effect ?]

@ Most NRQCD/COM NLO fits badly overshoot the data (factor 10+), except that
including low Py data which however cannot describe polarisation data

@ The energy dependence of the CEM is good but the normalisation tends to differ to
that coming the the Py dependence
[also remember that the CEM has a harder spectrum than the data]

@ NLO CSM predictions seem not stable at high energies : problem still to be
investigated

J.P. Lansberg (IPNO) Quarkonium Production in the LHC era January 25, 2019 15 /27



Pr-integrated quarkonium production in a few statements

Y. Feng, JPL, J.X. Wang, EPJC (2015) 75:313

@ CSM works at LO for J/y and ¢(2S) and at LHC energies for Y(1S)
[Y(1S) data undershot at low energies: PDF effect ?]

Most NRQCD/COM NLO fits badly overshoot the data (factor 10+), except that
including low Py data which however cannot describe polarisation data

The energy dependence of the CEM is good but the normalisation tends to differ to
that coming the the Py dependence
[also remember that the CEM has a harder spectrum than the data]

NLO CSM predictions seem not stable at high energies : problem still to be
investigated

Coupling NRQCD with CGC seems to describe the data but the cross-section
suppression seems energy independent (surprising for a low-x effect) and seems
to appear only for the quarkonia (again surprising)  v.o Ma.r. Venugopatan, PRL 13 (2014) 192301
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Pr-integrated quarkonium production in a few statements

Y. Feng, JPL, J.X. Wang, EPJC (2015) 75:313
@ CSM works at LO for J/y and ¢(2S) and at LHC energies for Y(1S)
[Y(1S) data undershot at low energies: PDF effect ?]

Most NRQCD/COM NLO fits badly overshoot the data (factor 10+), except that
including low Py data which however cannot describe polarisation data

The energy dependence of the CEM is good but the normalisation tends to differ to
that coming the the Py dependence
[also remember that the CEM has a harder spectrum than the data]

NLO CSM predictions seem not stable at high energies : problem still to be
investigated

Coupling NRQCD with CGC seems to describe the data but the cross-section
suppression seems energy independent (surprising for a low-x effect) and seems
to appear only for the quarkonia (again surprising)  v.o Ma.r. Venugopatan, PRL 13 (2014) 192301

@ All this does not allow one to draw a clear picture about the CO/CS dominance
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Part IV

New observables in quarkonium production
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Associated-quarkonium production
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Associated-quarkonium production

Observable pe e RQCD ere
H/ LHCb, CMS, ATLAS, DO NLO, Lo? LO Prod. Mechanism (CS dominant) +
(+NA3) NNLO* DPS + gluon TMD

J/W+D LHCb LO Lo? Lo Prod. Mechanism (c to J/psi
fragmentation) + DPS

I+ DO (N)LO Lo? LO Prod. Mechanism (CO dominant) +
DPS

J/Y+hadron STAR LO - Lo B feed-down; Singlet vs Octet
radiation

I+Z ATLAS NLO NLO Partial Prod. Mechanism + DPS

NLO

J/+W ATLAS LO NLO NLO (?) Prod. Mechanism (CO dominant) +
DPS

J/ vs mult. ALICE,CMS (+UA1) - - - Initial vs Final state effects ?

J/in jet. LHCb, CMS LO - Lo Prod. Mechanism (?)

J/P(Y) + jet - - - Prod. Mechanism (QCD corrections)

Isolated J/Q(Y) | -- - - - Prod. Mechanism (CS dominant ?)

J/p+b - - - Lo Prod. Mechanism (CO dominant) +
DPS

Y+D LHCb Lo Lo? Lo DPS

Y+y - NLO, Lo? Lo Prod. Mechanism (CO LDME mix) +

NNLO* gluon TMD/PDF

Y vs mult. CMS = = =

Y+Z - NLO Lo? Lo Prod. Mechanism + DPS

Y+Y CMS NLO ? Lo? Lo? Prod. Mechanism (CS dominant ?) +
DPS + gluon TMD
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On the importance of QCD corrections to J/y + J/y production
JPL, H.-S.Shao PRL 111, 122001 (2013); PLB 751 (2015) 479; CMS JHEP 1409 (2014) 094; ATLAS EPJC (2017) 77:76

@ At Born (LO) order, the P}¥ spectrum is §(PL"): 2 — 2 topologies
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@ a? contributions (green) are crucial here and do a good job even at P} ~ 30 GeV
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@ a? contributions (green) are crucial here and do a good job even at P} ~ 30 GeV
@ We do not expect NNLO («?) contributions to matter where one currently has data
[the orange histogram shows one class of leading Py af contributions ]
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On the importance of QCD corrections to J/y + J/y production

@ At Born (LO) order, the P#w

JPL, H.-S.Shao PRL 111, 122001 (2013); PLB 751 (2015) 479; CMS JHEP 1409 (2014) 094; ATLAS EPJC (2017) 77:76

@ It can be affected by initial parton k¢
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contributions (green) are crucial here and do a good job even at P} ~ 30 GeV

@ We do not expect NNLO («f) contributions to matter where one currently has data
[the orange histogram shows one class of leading Py af contributions ]
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The most natural solution for this excess is the independent production of two J/w
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Double parton scatterings in double J/w production
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Double parton scatterings in double J/w production

@ If the DPS are independent, one can write

pps _ 1 Oy0y

O' =
W2 ou

[oy can either be measured or computed]
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Double parton scatterings in double J/w production

@ If the DPS are independent, one can write

pps _ 1 Oy0y
Oyy =5
2 Oeff

[oy can either be measured or computed]

@ The smaller ., the larger the DPS yield
and the larger the parton correlations in the proton

@ DO: o =4.8+2.5mb DO Coll. PRD 90 (2014) 111101
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Double parton scatterings in double J/w production

@ If the DPS are independent, one can write

pps _ 1 Oy0y

O' =
W2 ou

[oy can either be measured or computed]

@ The smaller ., the larger the DPS yield

and the larger the parton correlations in the proton
@ DO: o =4.8+2.5mb DO Coll. PRD 90 (2014) 111101
@ CMS: 0., =82+2.0+£2.9 mb JPL, H.-S.Shao PLB 751 (2015) 479; CMS JHEP 1409 (2014) 094
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Double parton scatterings in double J/w production

@ If the DPS are independent, one can write

pps _ 1 Oy0y

O' =
W2 ou

[oy can either be measured or computed]

@ The smaller ., the larger the DPS yield

and the larger the parton correlations in the proton
@ DO: o =4.8+2.5mb DO Coll. PRD 90 (2014) 111101
@ CMS: 0., =82+2.0+£2.9 mb JPL, H.-S.Shao PLB 751 (2015) 479; CMS JHEP 1409 (2014) 094

ATLAS : 0cfr = 6.3 £ 1.6(stat) + 1.0(syst) + 0.1( BF) + 0.1(lumi) mb

ATLAS Eur. Phys. J. C (2017) 77:76
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Double parton scatterings in double J/w production

@ If the DPS are independent, one can write

pps _ 1 Oy0y

O' =
W2 ou

[oy can either be measured or computed]

@ The smaller ., the larger the DPS yield

and the larger the parton correlations in the proton
@ DO: o =4.8+2.5mb DO Coll. PRD 90 (2014) 111101
@ CMS: 0., =82+2.0+£2.9 mb JPL, H.-S.Shao PLB 751 (2015) 479; CMS JHEP 1409 (2014) 094

ATLAS : 0cfr = 6.3 £ 1.6(stat) + 1.0(syst) + 0.1( BF) + 0.1(lumi) mb

ATLAS Eur. Phys. J. C (2017) 77:76

NB: Agreement not perfect with the ATLAS data
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Predictions: excited states and more

JPL, H.-S.Shao PLB 751 (2015) 479

J.P. Lansberg (IPNO) Quarkonium Production in the LHC era January 25, 2019 21/27



Predictions: excited states and more

JPL, H.-S.Shao PLB 751 (2015) 479

@ Even though we find it a natural, accounting for DPS introduces another parameter
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@ Even though we find it a natural, accounting for DPS introduces another parameter
@ How to check that one is not playing with a further d.o.f. on the theory side?
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@ Even though we find it a natural, accounting for DPS introduces another parameter
@ How to check that one is not playing with a further d.o.f. on the theory side?
@ DPS vs SPS dominance are characterised by different feed-down patterns
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Even though we find it a natural, accounting for DPS introduces another parameter
How to check that one is not playing with a further d.o.f. on the theory side?
DPS vs SPS dominance are characterised by different feed-down patterns

We define Flﬁ, (F%,) as the fraction of events containing at least one y, (v')
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JPL, H.-S.Shao PLB 751 (2015) 479

Even though we find it a natural, accounting for DPS introduces another parameter
How to check that one is not playing with a further d.o.f. on the theory side?
DPS vs SPS dominance are characterised by different feed-down patterns

We define Fﬁf;, (F%,) as the fraction of events containing at least one y, (v')

© Under DPS dominance (e.g. large Ay), 0" = 5 % (m: symmetry factor)

Fyy, = Fy x (Fj + 2Fg™ + 2F) ), Fy, = Fyy x (Fy +2F§"t + 2F)), Fyect = (Fgirect)?
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JPL, H.-S.Shao PLB 751 (2015) 479
Even though we find it a natural, accounting for DPS introduces another parameter
How to check that one is not playing with a further d.o.f. on the theory side?

DPS vs SPS dominance are characterised by different feed-down patterns

We define Fﬁf;, (F%,) as the fraction of events containing at least one y, (v')

© Under DPS dominance (e.g. large Ay), 0" = 5 % (m: symmetry factor)

Fyy, = Fy x (Fj + 2Fg™ + 2F) ), Fy, = Fyy x (Fy +2F§"t + 2F)), Fyect = (Fgirect)?

© Under SPS CSM dominance,
° F:’V'V, is slightly enhanced by symmetry factors,
° Flﬁ,, unlike single quarkonium production, is not enhanced and is found to be small
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Predictions: excited states and more

JPL, H.-S.Shao PLB 751 (2015) 479
Even though we find it a natural, accounting for DPS introduces another parameter
How to check that one is not playing with a further d.o.f. on the theory side?
DPS vs SPS dominance are characterised by different feed-down patterns

We define Fﬁf;, (F%,) as the fraction of events containing at least one y, (v')

DPS — M 0a0p

@ Under DPS dominance (e.g. large Ay), o, 3 o (m: symmetry factor)

Fyy, = Fy x (Fj + 2Fg™ + 2F) ), Fy, = Fyy x (Fy +2F§"t + 2F)), Fyect = (Fgirect)?

© Under SPS CSM dominance,
° F:’V'V, is slightly enhanced by symmetry factors,
° Flﬁ,, unlike single quarkonium production, is not enhanced and is found to be small

@ Overall: ‘ (CSM) SPS ‘ DPS
FY, 45% 20%
Fv’ﬁw small 50%
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Predictions: excited states and more

JPL, H.-S.Shao PLB 751 (2015) 479
Even though we find it a natural, accounting for DPS introduces another parameter

How to check that one is not playing with a further d.o.f. on the theory side?
DPS vs SPS dominance are characterised by different feed-down patterns

We define Fﬁfc (F%,) as the fraction of events containing at least one y, (v')

v
© Under DPS dominance (e.g. large Ay), 0" = 5 % (m: symmetry factor)

Fyy, = Fy x (Fj + 2Fg™ + 2F) ), Fy, = Fyy x (Fy +2F§"t + 2F)), Fyect = (Fgirect)?

© Under SPS CSM dominance,
° F:’V'V, is slightly enhanced by symmetry factors,
° Flﬁ,, unlike single quarkonium production, is not enhanced and is found to be small

@ Overall: ‘ (CSM) SPS ‘ DPS
FY, 45% 20%
FX small 50%

@ Hence the importance of measuring]/w +y and J/y + x.
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Predictions: excited states and more

JPL, H.-S.Shao PLB 751 (2015) 479
Even though we find it a natural, accounting for DPS introduces another parameter

How to check that one is not playing with a further d.o.f. on the theory side?
DPS vs SPS dominance are characterised by different feed-down patterns

We define Fﬁfc (F%,) as the fraction of events containing at least one y, (v')

v
© Under DPS dominance (e.g. large Ay), 0" = 5 % (m: symmetry factor)

Fyy, = Fy x (Fj + 2Fg™ + 2F) ), Fy, = Fyy x (Fy +2F§"t + 2F)), Fyect = (Fgirect)?

© Under SPS CSM dominance,
° F:’V'V, is slightly enhanced by symmetry factors,
° Flﬁ,, unlike single quarkonium production, is not enhanced and is found to be small

@ Overall: ‘ (CSM) SPS ‘ DPS
FY, 45% 20%
FX small 50%

@ Hence the importance of measuring]/w +y and J/y + x.
@ J/w + 5, can also tell something about DPS and about .t
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N
Z+prompt J/y and W+prompt J/y

@ Significant tensions between the ATLAS measurements and the SPS NRQCD yields:

normalisation, Pt and A¢ distributions
ATLAS Collaboration, Eur. Phys. J. C 75 (2015) 229; JHEP 1404 (2014) 172
L.Gang et al., JHEP 1102 (2011) 071; B. Gong et al., JHEP 1303 (2013) 115;
L. Gang et al., PRD 83 (2011) 014001; J.P. Lansberg, C. Lorce, PLB 726 (2013) 218
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N
Z+prompt J/y and W+prompt J/y

@ Significant tensions between the ATLAS measurements and the SPS NRQCD yields:
normalisation, Pt and A¢ distributions
ATLAS Collaboration, Eur. Phys. J. C 75 (2015) 229; JHEP 1404 (2014) 172

L.Gang et al., JHEP 1102 (2011) 071; B. Gong et al., JHEP 1303 (2013) 115;
L. Gang et al., PRD 83 (2011) 014001; ).P. Lansberg, C. Lorce, PLB 726 (2013) 218

@ Just as the CEM tends to produce too many J/y at large Pr, o |
we expect it to be the same for J/y + Z and J/y + W and f Iﬂ

to provide us with an upper SPS limit.
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N
Z+prompt J/y and W+prompt J/y

@ Significant tensions between the ATLAS measurements and the SPS NRQCD yields:

normalisation, Pt and A¢ distributions
ATLAS Collaboration, Eur. Phys. J. C 75 (2015) 229; JHEP 1404 (2014) 172

L.Gang et al., JHEP 1102 (2011) 071; B. Gong et al., JHEP 1303 (2013) 115;
L. Gang et al., PRD 83 (2011) 014001; J.P. Lansberg, C. Lorce, PLB 726 (2013) 218

@ Just as the CEM tends to produce too many J/y at large Pr, o |

we expect it to be the same for J/y + Z and J/y + W and f Iﬂ
to provide us with an upper SPS limit.

@ Tensions are confirmed
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N
Z+prompt J/y and W+prompt J/y

@ Significant tensions between the ATLAS measurements and the SPS NRQCD yields:

normalisation, Pt and A¢ distributions
ATLAS Collaboration, Eur. Phys. J. C 75 (2015) 229; JHEP 1404 (2014) 172

L.Gang et al., JHEP 1102 (2011) 071; B. Gong et al., JHEP 1303 (2013) 115;
L. Gang et al., PRD 83 (2011) 014001; J.P. Lansberg, C. Lorce, PLB 726 (2013) 218

@ Just as the CEM tends to produce too many J/y at large Pr, o |
we expect it to be the same for J/y + Z and J/y + W and t};} Iﬂ
to provide us with an upper SPS limit.
@ Tensions are conﬁrmed but can be solved by introducing a DPS yield with
Oetr = 4.7112 mb for y + Z and 0.4 = 6.17]5 mb for y + W

JPL, H.S. Shao, JHEP 1610 (2016) 153; JPL, H.S. Shao, N. Yamanaka, PLB 781 (2018) 485

1S

Prompt Jlu,u»wt production at 7 TeV LHC
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Harvesting quarkonium data: 5 extractions using theory
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Harvesting quarkonium data: 5 extractions using theory
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Harvesting quarkonium data: 5 extractions using theory
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@ J/y+charm and Y+charm data point at . ~ 20 mb
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@ J/y+charm and Y+charm data point at . ~ 20 mb
@ J/y +]/y LHCb region: SPS computations with too large uncertainties to conclude
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@ J/y+charm and Y+charm data point at . ~ 20 mb
@ J/y +]/y LHCb region: SPS computations with too large uncertainties to conclude
@ Looking at the feed-down pattern likely necessary to check the SPS/DPS ratio
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Harvesting quarkonium data: 5 extractions using theory
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@ J/y+charm and Y+charm data point at . ~ 20 mb
@ J/y +]/y LHCb region: SPS computations with too large uncertainties to conclude
@ Looking at the feed-down pattern likely necessary to check the SPS/DPS ratio

@ Y + Y data by CMS: same as above about the current theory uncertainties
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Harvesting quarkonium data: 5 extractions using theory

30 o1 ATLAS (J/+WZ, Lansberg-Shao-Yamanaka)
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@ J/y+charm and Y+charm data point at . ~ 20 mb
@ J/w +]/w LHCb region: SPS computations with too large uncertainties to conclude
@ Looking at the feed-down pattern likely necessary to check the SPS/DPS ratio
@ Y + Y data by CMS: same as above about the current theory uncertainties
CMS JHEP05(2017)013
@ DO J/y +Y data clearly points at a very large DPS

DO PRL 116 (2016) 082002 + H.S. Shao - Y. J. Zhang PRL 117 (2016) 062001
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Part V

Conclusion
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Summary

o The quarkonium-inclusive-production mechanisms

not yet the object of a consensus

@ QCD corrections via new NLO, and perhaps NNLO topologies,
matter much for some mechanisms and some observables

@ Novel Observables are necessary:
pseudoscalar states and associated production

@ Beside the production-mechanism debate, quarkonia already allow us to
probe the parton correlation through DPS studies
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Summary

The quarkonium-inclusive-production mechanisms
not yet the object of a consensus

QCD corrections via new NLO, and perhaps NNLO topologies,
matter much for some mechanisms and some observables

Novel Observables are necessary:
pseudoscalar states and associated production

Beside the production-mechanism debate, quarkonia already allow us to
probe the parton correlation through DPS studies

They also start to tell us new information on the gluon Transverse
Momentum Distribution distributions
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NLOAccess [in2p3.fr/nloaccess]

NLOAccess

eneral description  Participants Links and resourc

GENERAL DESCRIPTION

Objectives:

NLOAccess will give access to automated tools generating scientific codes allowing anyone to evaluate
observables -such as production rates or kinematical properties - of scatterings involving hadrons. The
automation and the versatility of these tools are such that these scatterings need not to be pre-coded. In
other terms, it is possible that a random user may request for the first time the generation of a code to
compute characteristics of a reaction which nobody thought of before. NLOAccess will allow the user to test
the code and then to download to run it on its own computer. It essentially gives access to a dynamical

lihran,

To search type and hit enter
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https://nloaccess.in2p3.fr/

N
HELAC-Onia Web [in2p3.fr/nloaccess/HO]

HELAC-OniaWeb  RequestRegisiraion ~ References  Contact us “DLogin

Automated perturbative NLO calculation with HELAC-Onia Web

Welcome to HELAC-Onia Web!

HELAC-Onia ia an automatic matrix element generator for the calculation of the heavy
quarkonium helicity amplitudes in the framework of NRQCD factorization.

The program is able to calculate helicity amplitudes of multi P-wave quarkonium states
production at hadron colliders and electron-positron colliders by including new P-wave off-

shell currents. Besides the high efficiencies in putation of multi-leg f within
the Standard Model, HELAC-Onia is also sufficiently numerical stable in dealing with
P-wave quarkonia and P-wave cols tet ir iate states.

Already registered to the portal? Please login.

Do you not have an account? Make a registration request.

© Copyright 2018 by Carlo Flore
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Part VI

Backup
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Comparison with the new LHCb data at 13 TeV

LHCb JHEP06(2017)047

o(yy)nb no Py cut Pr>1GeV Pr >3 GeV
NLO* CS 154220 14.8+17°3 6.8 +0.672
NLOCS 11.9%3% — —
DPS (o =1as51755mo) | 8.1+0.9718 7.5+ 0.8413 4.9 £0.575%
Data 152+1.0+£09 135+09+09 83+0.6+0.5
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Comparison with the new LHCb data at 13 TeV

LHCb JHEP06(2017)047

o(yy)nb no Py cut Pr>1GeV Pr >3 GeV
NLO* CS 154220 14.8+17°3 6.8 +0.672
NLOCS 11.9%3% — —
DPS (o =1as51755mo) | 8.1+0.9718 7.5+ 0.8413 4.9 £0.575%
Data 152+1.0+£09 135+09+09 83+0.6+0.5

o Agreement between CSM NLO and data
o Large scale uncertainty for the NLO*, greatly reduced at NLO
e REMINDER: it is not an option to "switch off”/ignore the NLO CS

contribution
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Comparison with the new LHCb data at 13 TeV

LHCb JHEP06(2017)047

o(yy)nb no Py cut Pr>1GeV Pr >3 GeV
NLO* CS 154220 14.8+17°3 6.8 +0.672
NLOCS 11.9%3% — —
DPS (o =1as51755mo) | 8.1+0.9718 7.5+ 0.8413 4.9 £0.575%
Data 152+1.0+09 135+£09+£09 83+0.6=+0.5

o Agreement between CSM NLO and data

o Large scale uncertainty for the NLO*, greatly reduced at NLO

e REMINDER: it is not an option to "switch off”/ignore the NLO CS

contribution [parameter free]

Yet, room for DPS; however tension if .5 ~ 7 mb

Tension between LHCD and other di-J/y extractions
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[rapidity effect ?]
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Gluon TMDs in unpolarised protons
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Gluon TMDs in unpolarised protons

X, k

o Gauge -invariant definition: P/u\

d(fp d £T i(xP+kr)- nv n )
D (x,kr, o p) = /We 4 (PIF (O)U[o,ﬂF”(f)u[f,oﬂP)L_P,:o

e U and U’ are process dependent gauge links
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Gluon TMDs in unpolarised protons

X, k¢

o Gauge -invariant definition: P/u\

d(fp d £T i(xP+kr)- nv n )
D (x,kr, o p) = /We 4 (PIF (O)U[o,ﬂF”(f)u[f,oﬂP)L_P,:o

e U and U’ are process dependent gauge links

@ Parametrisation: P.J. Mulders, J. Rodrigues, PRD 63 (2001)2094021; D. Boer et al. JHEP 1610 (2016) 013
1 Kkiky k

O (x,kr, ,p) = —*{g’wfg(x kr, u) —( LT 4ot —L ) S (x, kr, ) |+ suppr.

g > 56> T J1 > > 2 T ) 1 > >

2x M; 2M;
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Gluon TMDs in unpolarised protons

X, k¢

o Gauge -invariant definition: P/u\

d(fp d £T i(xP+kr)- nv n )
D (x,kr, o p) = /We 4 (PIF (O)U[o,ﬂF”(f)u[f,oﬂP)L_P,:o

e U and U’ are process dependent gauge links
@ Parametrisation: P.J. Mulders, J. Rodrigues, PRD 63 (2001) 094021; D. Boer et al. JHEP 1610 (2016) 013

) 1 Kkt K
O (o o) = =5 e ok ) = (5t )+ s

e f%: TMD distribution of unpolarised gluons

o /1, ¢: TMD distribution of linearly polarised gluons
[Helicity-flip distribution]
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gg fusion in arbitrary unpolarised process [colourless final state]

do88 <
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gg fusion in arbitrary unpolarised process [colourless final state]

do88 <
F

(= Mo M, ) CLEA
ap
= helicity non-flip, azimuthally independent
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gg fusion in arbitrary unpolarised process [colourless final state]

do88 <
F

(£ M M) CLEF

AaAp
= helicity non-flip, azimuthally independent

Fy
— e

+ ( Z MA,AMiA,,A) C[WO X hnghng]
A
= double helicity flip, azimuthally independent
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gg fusion in arbitrary unpolarised process [colourless final state]

do88 <
F

(£ M M) CLEF

AaAp
= helicity non-flip, azimuthally independent

Fy
— e

+( §MA,AM3,,A) Clwo x HEEHE]

= double helicity flip, azimuthally independent
B3

(T Moo My, ) Clwe = fihf] o+ {a o b)
a>p
= single helicity flip, cos(2¢)-modulation
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gg fusion in arbitrary unpolarised process [colourless final state]

do88 <
F

(£ M M) CLEF

AaAp
= helicity non-flip, azimuthally independent

Fy
— e

+( §MA,AM3,,A) Clwo x HEEHE]

= double helicity flip, azimuthally independent
B3

(T Moo My, ) Clwe = fihf] o+ {a o b)
ashb

= single helicity flip, cos(2¢)-modulation
Fy
——

(S MLMEL, ) Clwa x RS
1
= double helicity flip, cos(4¢)-modulation
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|
Processes proposed to study the gluon TMD at hh colliders
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|
Processes proposed to study the gluon TMD at hh colliders

e 'g¢’ — yy: JW Qiu, M. Schlegel, W. Vogelsang, PRL 107, 062001 (2011)

@ g¢— (J/v,Y) +y: W.den Dunnen, JPL, C. Pisano, M. Schlegel, PRL 112,
212001 (2014)

® gg — 7c + 7c : G.P. Zhang, PRD 90 (2014) 9 094011
e 'g¢’ - H" +jet: D. Boer, C. Pisano, PRD 91 (2015) 074024

e g¢— (J/y,Y) +Z/y* : JPL, C. Pisano, M. Schlegel, NPB 920 (2017) 192
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|
Processes proposed to study the gluon TMD at hh colliders

e 'g¢’ — yy: JW Qiu, M. Schlegel, W. Vogelsang, PRL 107, 062001 (2011)

@ g¢— (J/v,Y) +y: W.den Dunnen, JPL, C. Pisano, M. Schlegel, PRL 112,
212001 (2014)

® gg — 7c + 7c : G.P. Zhang, PRD 90 (2014) 9 094011
e 'g¢’ - H" +jet: D. Boer, C. Pisano, PRD 91 (2015) 074024

e g¢— (J/y,Y) +Z/y* : JPL, C. Pisano, M. Schlegel, NPB 920 (2017) 192

|None are measured so far ... |
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|
J/v+] ]y at 10wPVT/w
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|
J/v+] ]y at 10wPVT/w

o J/yrelatively easy to detect. Already studied by
LHCb, CMS, ATLAS & D0

LHCb PLB 707 (2012) 52; JHEP 1706 (2017) 047; CMS JHEP 1409 (2014) 094;
ATLAS EPJC 77 (2017) 76; DO PRD 90 (2014) 111101
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J/v+] ]y at 10wPVT/w

o J/yrelatively easy to detect. Already studied by
LHCb, CMS, ATLAS & D0

LHCb PLB 707 (2012) 52; JHEP 1706 (2017) 047; CMS JHEP 1409 (2014) 094;
ATLAS EPJC 77 (2017) 76; DO PRD 90 (2014) 111101

@ Negligible qgg contributions even at
AFTER@LHC (y/s = 115 GeV) energies

J.P.L., H.S. Shao NPB 900 (2015) 273
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|
J/v+] ]y at 10wPVT/w

1 g e
o J/y:relatively easy to detect. Already studied by % 10 ‘
(0] -
LHCb, CMS, ATLAS & DO 5
LHCb PLB 707 (2012) 52; JHEP 1706 (2017) 047; CMS JHEP 1409 (2014) 094; N 1
ATLAS EPJC 77 (2017) 76; DO PRD 90 (2014) 111101 - 10
. e - . . °
@ Negligible g4 contributions even at g
) 106F s 7TeVeLHC ]
AFTER@LHC (y/s = 115 GeV) energies o :  CMsAwen,
0 0 20 30 AC
J.P.L., H.S. Shao NPB 900 (2015) 273
Py (Gev)

@ Negligible CO contributions, in particular at
low Plj’/«w [black/dashed curves vs. blue]

JPL, H.S. Shao PLB 751 (2015) 479; P. Ko, C. Yu, and J. Lee, JHEP
01(2011) 070; Y.-J. Li, G.-Z. Xu, K.-Y. Liu, and Y.-J. Zhang, JHEP
07. See also N. Yamanaka’s tomorrow at 10h10, WG5. (2013) 051

@ No final state gluon needed for the Born

contribution: pure colourless final state
JPL, H.S. Shao PRL 111, 122001 (2013)

J.P. Lansberg (IPNO) Quarkonium Production in the LHC era January 25, 2019 33/27



|
J/v+] ]y at 10wPVT/w

o J/yrelatively easy to detect. Already studied by
LHCb, CMS, ATLAS & D0

LHCb PLB 707 (2012) 52; JHEP 1706 (2017) 047; CMS JHEP 1409 (2014) 094;
ATLAS EPJC 77 (2017) 76; DO PRD 90 (2014) 111101

@ Negligible qgg contributions even at
AFTER@LHC (y/s = 115 GeV) energies

J.P.L., H.S. Shao NPB 900 (2015) 273
@ Negligible CO contributions, in particular at
low Pl{«w [black/dashed curves vs. blue]

JPL, H.S. Shao PLB 751 (2015) 479; P. Ko, C. Yu, and J. Lee, JHEP
01(2011) 070; Y.-J. Li, G.-Z. Xu, K.-Y. Liu, and Y.-J. Zhang, JHEP
07. See also N. Yamanaka’s tomorrow at 10h10, WG5. (2013) 051

@ No final state gluon needed for the Born

contribution: pure colourless final state
JPL, H.S. Shao PRL 111, 122001 (2013)

o Inthe CMS & ATLAS acceptances (Pr cut),
small DPS effects, but required by the data at large Ay

J.P. Lansberg (IPNO) Quarkonium Production in the LHC era

do/dPY (nby/GeV)

do/dAy [pb/0.3]

7TeVelLHC

CMS Accep.
20 30 AC

PY (GeV)

(Y2

‘ATLAé T T

s =8TeV, 114 fbo*
fops = 9.2% + 2.1%

e Data -
E o DPS Estimate
E* DPS Pred.
——

3 44—
-O-
+
10 ++—?—$+
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2.
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|
J/v+] ]y at 10wPVT/w

o J/yrelatively easy to detect. Already studied by $
o)
LHCb, CMS, ATLAS & D0 )
LHCb PLB 707 (2012) 52; JHEP 1706 (2017) 047; CMS JHEP 1409 (2014) 094; N
ATLAS EPJC 77 (2017) 76; DO PRD 90 (2014) 111101 b
. . - . . °
@ Negligible g4 contributions even at 5
) 106F s 7TeVeLHC ]
AFTER@LHC (y/s = 115 GeV) energies o :  cus Acep
0 0 20 30 AC
J.P.L., H.S. Shao NPB 900 (2015) 273
. S . . P (Gev)
@ Negligible CO contributions, in particular at
"?. ‘ATLAé T T
low Pl{«w [black/dashed curves vs. blue] g f5=8TeV, 10410
JPL, H.S. Shao PLB 751 (2015) 479; P. Ko, C. Yu, and J. Lee, JHEP > ;o[ frsmoeszin ]
01(2011) 070; Y.-J. Li, G.-Z. Xu, K.-Y. Liu, and Y.-J. Zhang, JHEP E Eoa O DPS Estimate 3
07. See also N. Yamanaka’s tomorrow at 10h10, WG5. (2013) 051 3 F DPS Pred
@ No final state gluon needed for the Born i
contribution: pure colourless final state 4, ]
JPL, H.S. Shao PRL 111, 122001 (2013) 107 - 4
o Inthe CMS & ATLAS acceptances (Pr cut), i
-2
small DPS effects, but required by the data at large Ay % 05 115 2 25 3 35 4
Dy, IIp)

@ DPS in LHCD data [kinematical distributions well controlled : independent scatterings]
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What’s special about double vector onium production ?

JPL, C. Pisano, F. Scarpa, M. Schlegel, PLB 784 (2018) 217
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JPL, C. Pisano, F. Scarpa, M. Schlegel, PLB 784 (2018) 217

In general, the hard scattering coefficients are bounded :
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What’s special about double vector onium production ?

JPL, C. Pisano, F. Scarpa, M. Schlegel, PLB 784 (2018) 217

In general, the hard scattering coefficients are bounded :

g¢ — @ + Q in the limit where M, > M, and cos(0cs) — 0:

. 256 N F, 8IM§cos(fcs)® F;  —24Mp cos(bcs)?
1> >7 2 49 T >3 > 5 5
MgoMyp B Moo F Moo
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What’s special about double vector onium production ?

JPL, C. Pisano, F. Scarpa, M. Schlegel, PLB 784 (2018) 217

In general, the hard scattering coefficients are bounded :

g¢ — @ + Q in the limit where M, > M, and cos(0cs) — 0:

. 256 N F, 8IM§cos(fcs)® F;  —24Mp cos(bcs)?
1> >7 2 49 T >3 > 5 5
MgoMyp B Moo F Moo

F, = F, atlarge Mgg

= di-J/y (or di-Y) maximise the observability of cos 4¢) modulations
in a kinematical region where data are already taken !
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N
TMD modelling : f{ and the relevance of the LHCb data

JPL, C. Pisano, F. Scarpa, M. Schlegel, PLB 784 (2018) 217
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N
TMD modelling : f{ and the relevance of the LHCb data

JPL, C. Pisano, F. Scarpa, M. Schlegel, PLB 784 (2018) 217

o £ modelled as a Gaussian in kr £ (x, IQZT) = % exp (%)
T T

where g(x) is the usual collinear PDF

o First experimental determination [with a pure colorless final state] of <k%~>
by fitting C[ff] over the normalised LHCb do /dPy, spectrum at 13 TeV
from which we have subtracted the DPS yield determined by LHCb
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TMD modelling : f{ and the relevance of the LHCb data

JPL, C. Pisano, F. Scarpa, M. Schlegel, PLB 784 (2018) 217

o £ modelled as a Gaussian in kr £ (x, IQZT) = g((x)) exp ( i kz) )

where g(x) is the usual collinear PDF

o First experimental determination [with a pure colorless final state] of <k%~>
by fitting C[ff] over the normalised LHCb do /dPy, spectrum at 13 TeV
from which we have subtracted the DPS yield determined by LHCb

o 04 . . . .
E Gaussian fJ, <k?> fit —
= over [0 ;<MW>/2]
'g_ 03 i
o LHCb data without DPS
3 02 ] <M,>-8GeV 1
% <k&> =3.3+0.8 GeV?
=
Lo 01 H ++ reducedx =0.36
~
a
g
z ol .
S 0 2 4 10 12
Py [GeV] (@)
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-
TMD modelling : f{ and the relevance of the LHCb data
JPL, C. Pisano, F. Scarpa, M. Schlegel, PLB 784 (2018) 217
- - 72
o £ modelled as a Gaussian in kr : £ (x, k%) = ((x)) exp ( ) k1 oy )
where g(x) is the usual collinear PDF

o First experimental determination [with a pure colorless final state] of <k%~>
by fitting C[ff] over the normalised LHCb do /dPy, spectrum at 13 TeV
from which we have subtracted the DPS yield determined by LHCb

— 04 T T T T i
E Gaussian 1, <k il — @ Integration over ¢ = cos(n¢)-terms
= over [0 <M, >/2] cancel out
s 03 1 @ F, < F = only C[f*f¢] contributes to
o LHCb data without DPS 2 << b = only C[f 7]
g ] the cross-section
o 02 <Myy> =8 GeV ,| @ Noevolution so far: (k%) ~ 3 GeV?
3 <Kf>=33+0.8 GeV accounts both for non-perturbative and
=201 + reduced 1* = 0.36 | perturbative broadenings at a scale close
g to Myy ~ 8 GeV
z 0 o 2 . 6 5 10 12 @ Disentangling such (non-)perturbative
b Pyy, [GeV] (@) effects requires data at different scales
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Expected azimuthal asymmetries

JPL, C. Pisano, F. Scarpa, M. Schlegel, PLB 784 (2018) 217
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Expected azimuthal asymmetries

fin %]
A

2(cos(20¢s))
©
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[in %]
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2(cos(40¢g))

|cos 6cgl < 0.25

0 2 4 6 8 10
Py, [GeV] @

b |cos Bgg| < 0.25

L My, = 21 GeV

L My, = 12 GeV

My, = 8 GeV
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[in %]
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2 (cos(49cg))

-16
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JPL, C. Pisano, F. Scarpa, M. Schlegel, PLB 784 (2018) 217

| /MW =8GeV ]
| My, =21GeV |
t My, = 12 GeV 4
0.25 < |cos O¢g| < 0.5 1
0 2 4 6 8 10
Py, [GeV] ®)
M, =8GeV —]
| My, = 12 GeV |
| Myy=21GeV |
F 0.25 <|cos 6¢g| < 0.5 1
0 2 4 6 8 10
Py, [GeV] @
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Leading Order results

Basic pQCD approach: the Colour Singlet Model (CSM)

C.-H. Chang, NPB172, 425 (1980); R. Baier & R. Riickl Z. Phys. C 19, 251(1983);

= Perturbative creation of 2 quarks Q and Q BUT Q
}}% “ 1O
3 (;ian(')) .
‘5T ])%

e
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Basic pQCD approach: the Colour Singlet Model (CSM)

C.-H. Chang, NPB172, 425 (1980); R. Baier & R. Riickl Z. Phys. C 19, 251(1983);

= Perturbative creation of 2 quarks Q and Q BUT
w on-shell (x)
= in a colour singlet state
= with a vanishing relative momentum
= in a S state (for J/y, y’ and Y)

J.P. Lansberg (IPNO) Quarkonium Production in the LHC era

,

e

.
«
LO
3 (;IZrn(')) .
‘S 1)%

January 25, 2019 37127



Leading Order results

Basic pQCD approach: the Colour Singlet Model (CSM)

C.-H. Chang, NPB172, 425 (1980); R. Baier & R. Riickl Z. Phys. C 19, 251(1983);

= Perturbative creation of 2 quarks Q and Q BUT Q
= on-shell (x) }3}\ " LO
= in a colour singlet state 3(2mg)*
= with a vanishing relative momentum cP
= in a S state (for J/y, y’ and Y) )99’

= Non-perturbative binding of quarks — Schroédinger wave function
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C.-H. Chang, NPB172, 425 (1980); R. Baier & R. Riickl Z. Phys. C 19, 251(1983);

< Perturbative creation of 2 quarks Q and Q BUT Q
= on-shell (x) }}}\ <o
= in a colour singlet state 3(2mg)*
= with a vanishing relative momentum Sopp
> ina’ Sy state (for J/y, v and Y) )95"
= Non-perturbative binding of quarks — Schroédinger wave function
° [+, 314 production at the Tevatron o
S\ 1 . sqrt(s)=1.8 Tev'
[ -
g o - iR
= - 14Ge\u/"<mru<1eeev
- 0.01 El
]
© 0001
_\é le-04
a
T 1eos
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Py (GeV) CDF, PRL 79:572 & 578,1997
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Leading Order results

Basic pQCD approach: the Colour Singlet Model (CSM)

C.-H. Chang, NPB172, 425 (1980); R. Baier & R. Riickl Z. Phys. C 19, 251(1983);

= Perturbative creation of 2 quarks Q and Q BUT Q
= on-shell (x) }}}\ .

LO
= in a colour singlet state 3(2mg)’
. . . . ()( - N"
= with a vanishing relative momentum > oPp
> ina’ Sy state (for J/y, v and Y) )95"
= Non-perturbative binding of quarks — Schroédinger wave function
%: 100 ""+ ‘t" \‘((18) p‘rompt‘dalax‘Fd"w‘
O 10 N Lo
s -+
= 1r
om
x 01¢
<
Y o001}
& 0001 |
k]
Stleoa b v
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P; (GeV) CDF, PRL 88:161802,2002
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Leading Order results

Basic pQCD approach: the Colour Singlet Model (CSM)

C.-H. Chang, NPB172, 425 (1980); R. Baier & R. Riickl Z. Phys. C 19, 251(1983);
= Perturbative creation of 2 quarks Q and Q BUT Q
= on-shell (x) }3}\ " LO
= in a colour singlet state o3 (2mg)*
= with a vanishing relative momentum o opp
v ina?’ Sy state (for J/y, v and Y) )99’

= Non-perturbative binding of quarks — Schroédinger wave function

100 g T T T ——
"l’ +*+ Y(1S) prompt data x F4"et
10 | t Lo

—
1k

0.1+
0.01 +
0.001 ¢

do/dPy]y,j<0.4 X Br (pbIGeV)

le-04

0O 5 10 15 20 25 30 35 40
P (GeV)

= Large QCD corrections from new topologies reduce the gap with data at mid and

lare PT P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, PRL 101, 152001 (2008
J.P. Lansberg (IPNO) Quarkonium Production in the LHC era January 25, 2019 37127



Leading Order results

The LO CSM accounts for the Pr-integrated yield

S.J. Brodsky and JPL, PRD 81 051502 (R), 2010; JPL, PoS(ICHEP 2010), 206 (2010); NPA 910-911 (2013) 470

— The yield vs. \/s, y
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The LO CSM accounts for the Pr-integrated yield

S.J. Brodsky and JPL, PRD 81 051502 (R), 2010; JPL, PoS(ICHEP 2010), 206 (2010); NPA 910-911 (2013) 470

— The yield vs. \/s, y

@ Good agreement with RHIC, Tevatron and LHC data [LHC j/y points to be updated, sorry]
(multiplied by a constant F%"*“!, considered to be constant)
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— The yield vs. \/s, y

@ Good agreement with RHIC, Tevatron and LHC data [LHC j/y points to be updated, sorry]
(multiplied by a constant F%"*“!, considered to be constant)
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Leading Order results

The LO CSM accounts for the Pr-integrated yield

S.J. Brodsky and JPL, PRD 81 051502 (R), 2010; JPL, PoS(ICHEP 2010), 206 (2010); NPA 910-911 (2013) 470

— The yield vs. \/s, y

@ Good agreement with RHIC, Tevatron and LHC data [LHC j/y points to be updated, sorry]
(multiplied by a constant F%7*°!, considered to be constant)

25 LO gg CSM s

. CMS »-m
5 LHCb —v—
£ 2
5 direct
x 1. FS)= 7045 %
z 5 FiS)= 7045 %
°
52 1
S5
©
T 05

0

0 2 4 6

CMS PRD 83 (2011) 112004; LHCb EPJC 72 (2012) 2025
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S.J. Brodsky and JPL, PRD 81 051502 (R), 2010; JPL, PoS(ICHEP 2010), 206 (2010); NPA 910-911 (2013) 470

— The yield vs. \/s, y

@ Good agreement with RHIC, Tevatron and LHC data [LHC j/y points to be updated, sorry]
(multiplied by a constant F%7*°!, considered to be constant)
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. CMS »-m
5 LHCb —v—
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5 direct
x 1. FS)= 7045 %
z 5 FiS)= 7045 %
°
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©
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CMS PRD 83 (2011) 112004; LHCb EPJC 72 (2012) 2025

@ Unfortunately, very large th. uncertainties: masses, scales (yg, yir), gluon PDFs at

low x and Q?, ...
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Leading Order results

The LO CSM accounts for the Pr-integrated yield

S.J. Brodsky and JPL, PRD 81 051502 (R), 2010; JPL, PoS(ICHEP 2010), 206 (2010); NPA 910-911 (2013) 470
— The yield vs. \/s, y

@ Good agreement with RHIC, Tevatron and LHC data [LHC j/y points to be updated, sorry]
(multiplied by a constant F%7*°!, considered to be constant)

25 LO gg CSM s
. CMS »m
= LHCb ——
o
£ 2
@
x 15 Firgi= 7045 %
>
<
g2 !
o=
©
T 05

0 2 4 6

CMS PRD 83 (2011) 112004; LHCb EPJC 72 (2012) 2025

@ Unfortunately, very large th. uncertainties: masses, scales (yg, yir), gluon PDFs at
low x and Q?, ...

@ Earlier claims that CSM contribution to do/dy was small were based on the
incorrect assumption that y. feed-down was dominant
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NLO CSM at RHIC

S.J. Brodsky and JPL, PRD 81 051502 (R), 2010.

]/V/ %0 PHENIX (PRL 09 232002) *——+—
direct, PHENIX (2000; Preiim) @
5 40 [F5iT=59£10%
=
5 30 } H i
x
ol gt Y
I
© 10 }i i
0
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From LO to NLO

NLO CSM at RHIC

S.J. Brodsky and JPL, PRD 81 051502 (R), 2010.

_’ 50 (PRL 09 232002) =+
I 10 o PR ) —o—]
@ Fiiy = 59+10 % LO —
=30
[3]
% 20
&)
© 10
0
4 ,
LO: gg — J/yg (see slide 5, nothing new !)
ureriteystivm Bl i e LK g

January 25, 2019 39/27



NLO CSM at RHIC

S.J. Brodsky and JPL, PRD 81 051502 (R), 2010.

]/w 50 PHENIX (PAL 09 232002) =+
PHENIX (2009; Prelim) *—@—|
= 40 [Fece 59410 % NLO ===
‘g LO —
530
=
520
®
T 10
0
4 3 2 4 0 1 2 3 4

NLO: gg — J/vgg. g9 — ]/ vgq, -

using the matrix elements from J.Campbell, F. Maltoni, F. Tramontano, PRL 98:252002,2007
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NLO CSM at RHIC

S.J. Brodsky and JPL, PRD 81 051502 (R), 2010.
nd ]/v/ 50 PHENIX (PRt 08 232002)

PHENIX (2009; Prehm} ——

=40 FESEt= 50410 9% )
2 NLO
=30 LO -
[3)
x
>20
<)
o
10

0

-4

NLO™*: possible new contribution at LO ¢g — J/yc
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From LO to NLO

NLO CSM at RHIC

-]y

IS
S

do/dy x Br (nb)

a
<3

BN W
o o o

o

S.J. Brodsky and JPL, PRD 81 051502 (R), 2010.

Fiecl= 59£10 %

PHENIX (PRL 09 252002) *————
PHENIX (2009; Preim) —@—4

NLO
LO -

NLO™: possible new contrlbutlon at LO g~ J]we

- Y 70
60
)
£50
@ 40
x
>30
S
S 20
=]

10

FIig 42410 %

TPHENIX (Preiim) =~ |

STAR (Preiim) i |
NLO —

LO - 1

*
Sorry: I should update these plots (updated data and fraction is about 60 %)
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NLO CSM at RHIC

S.J. Brodsky and JPL, PRD 81 051502 (R), 2010.

e d ]/w 50 PHENIX (PRL 08 232002) ———
PHENIX (2009; Prelim) @4
=40 Pt 50410 9% NLO®
g NLO
;;]’ 30 LO el
x
>20
3
o
<10
0
4 3 2 4 0 1 2 3 4
y
+.
NLO™: possible new contrlbutlon at LO g~ J]vc
—_ Y 70 b TPHENIX (Preiim) =~ |
60 | e 42610 9% STAR e -
Ss0f Lo — ]
@40 | ]
<
>30 - ]
k<
S 20 | ]
=]
10f
0
3

3
y ©
A priori, good convergence NLO w.r.t. LO ‘
[T will come back to that later]

*
Sorry: I should update these plots (updated data and fraction is about 60 %)
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From LO to NLO

NLO NRQCD up to RHIC

Available online at wwwsciencedirect.com

@ —

Physcs Leters B 638 (2006) 202-208
W eheviercomlocatephysletb

Analysis of charmonium production at fixed-target experiments
in the NRQCD approach
F. Maltoni®, J. Spengler", M. Bargiotti ¢, A. Bertin®, M. Bruschi*, S. De Castro*, L. Fabbri®,

P. Faccioli ¢, B. Giacobbe ©, F. Grimaldi ©, I. Massa, M. Piccinini ¢, N. Semprini-Cesari ¢, R. Spighi ¢,
M. Villa“. A. Vitale®. A. Zoccoli **
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NLO NRQCD up to RHIC

Available online at wwwsciencedirect.com

sorence @omeer-

PHYSICS LETTERS B

Physics Leters B 6

Analysis of charmonium production at fixed-target experiments
in the NRQCD approach
F. Maltoni®, J. Spengler", M. Bargiotti ¢, A. Bertin®, M. Bruschi*, S. De Castro*, L. Fabbri®,

P. Faccioli ¢, B. Giacobbe ©, F. Grimaldi ©, I. Massa, M. Piccinini ¢, N. Semprini-Cesari ¢, R. Spighi ¢,
M. Villa“. A. Vitale®. A. Zoccoli **

@ Analysis based on the hard partonic cross sections computed at NLO in
A. Petrelli, M. Cacciari, M. Greco, F. Maltoni and M. L. Mangano, Nucl. Phys. B 514 (1998) 245
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NLO NRQCD up to RHIC

Available online at wwwsciencedirect.com

sorence @omeer-

PHYSICS LETTERS B

ELSEVIER Physics Leters B 6

Analysis of charmonium production at fixed-target experiments
in the NRQCD approach

F. Maltoni *, J. Spengler®, M. Bargiotti ¢, A. Bertin, M. Bruschi <, S. De Castro*, L. Fabbri,
P. Faccioli ¢, B. Giacobbe ©, F. Grimaldi ©, I. Massa, M. Piccinini ¢, N. Semprini-Cesari ¢, R. Spighi ¢,
M. Villa“. A. Vitale®. A. Zoccoli **

@ Analysis based on the hard partonic cross sections computed at NLO in
A. Petrelli, M. Cacciari, M. Greco, F. Maltoni and M. L. Mangano, Nucl. Phys. B 514 (1998) 245
@ At a}, one only has CO contributions

2 — 1 processes : q+§ — QQ[3SI[8]] and g+g — QQ[IS(ES] ,3P1[§),1,2]
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NLO NRQCD up to RHIC

Available online at wwwsciencedirect.com

@ —

ELSEVIER Physcs Leters B 638 (2006) 202-208

Analysis of charmonium production at fixed-target experiments
in the NRQCD approach

F. Maltoni *, J. Spengler®, M. Bargiotti ¢, A. Bertin, M. Bruschi <, S. De Castro*, L. Fabbri,
P. Faccioli ¢, B. Giacobbe ©, F. Grimaldi ©, I. Massa, M. Piccinini ¢, N. Semprini-Cesari ¢, R. Spighi ¢,
M. Villa“. A. Vitale®. A. Zoccoli **

@ Analysis based on the hard partonic cross sections computed at NLO in
A. Petrelli, M. Cacciari, M. Greco, F. Maltoni and M. L. Mangano, Nucl. Phys. B 514 (1998) 245
@ At a}, one only has CO contributions (- virtual correction at a3):
2 — 1processes : q+q — QQ[351[8]] and g+ g — QQ[IS(ES] ,3P1[§),1,2]
o At ocg, one has in addition real emissions (including one CS process)
g+~ QQUSH S PN )1+, g +a(@) » QAU P ] +4(@)
q+q— Qé[lsgsj ,351[8],3P1[§) 2] +gandg+g— Q6[3SI[1]] +
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NLO NRQCD up to RHIC

Available online at wwwsciencedirect.com

sorence @omeer-

PHYSICS LETTERS B

ELSEVIER Physcs Leters B 638 (2006) 202-208

Analysis of charmonium production at fixed-target experiments
in the NRQCD approach
F. Maltoni®, J. Spengler", M. Bargiotti ¢, A. Bertin®, M. Bruschi*, S. De Castro*, L. Fabbri®,

P. Faccioli ¢, B. Giacobbe ©, F. Grimaldi ©, I. Massa, M. Piccinini ¢, N. Semprini-Cesari ¢, R. Spighi ¢,
M. Villa“. A. Vitale®. A. Zoccoli **

@ Analysis based on the hard partonic cross sections computed at NLO in
A. Petrelli, M. Cacciari, M. Greco, F. Maltoni and M. L. Mangano, Nucl. Phys. B 514 (1998) 245
@ At a}, one only has CO contributions (- virtual correction at ocg)-
2 — 1processes : g+ — QQ[3SI[8]] and g+g — QQ[IS(E 3P[[82) 1]
o At ocg, one has in addition real emissions (including one CS process)
Aricl8] 3 [8]3 [SJ - 5 1[0]3 [8] 3p[8] -
g+~ QQLSy . S Py ,1 + ¢ g +9(9) = QQ['Sg .S Py , 1 +4(q)
_ — 3
q+q— QQ[ls([) 35[ ] 3P][ % L]l +gandg+g— QQ[3S ]+
@ Done with NRQCD LDMEs fitted at LO on Pr spectra from CDF (=~ 2 TeV)
Reference NRQCD matrix elements for charmonium production. The color-
singlet matrix elements are taken from the potential model calculation of [14,
15]. The color-octet matrix elements have been extracted from the CDF data
[16] in Ref. [17]
H o) (©Of Bsin (O = 0sB PP 1) /m2

J/y o 1.16GeV3  119x 1072 GeV3 1.0 x 1072 GeV?
Y(2S) 0.76GeV3  0.50 x 1072 GeV3 042 x 1072 GeV?
X0 0.11GeV  031x1072GeV? -
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NLO NRQCD up to RHICII

Abstract

We present an analysis of the existing data on charmonium hadro-production based on non-relativistic QCD (NRQCD) calculations at the
next-to-leading order (NLO). All the data on J/1 and ¥(2S) production in fixed-target experiments and on pp collisions at low energy are
included. We find that the amount of color-octet contribution needed to describe the data is about 1/10 of that found at the Tevatron.
©2006 Elsevier B.V. All rights reserved.
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We present an analysis of the existing data on charmonium hadro-production based on non-relativistic QCD (NRQCD) calculations at the
next-to-leading order (NLO). All the data on J/1 and ¥(2S) production in fixed-target experiments and on pp collisions at low energy are
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NLO NRQCD up to RHICII

Abstract
We present an analysis of the existing data on charmonium hadro-production based on non-relativistic QCD (NRQCD) calculations at the
next-to-leading order (NLO). All the data on J/1 and ¥(2S) production in fixed-target experiments and on pp collisions at low energy are
included. We find that the amount of color-octet contribution needed to describe the data is about 1/10 of that found at the Tevatron.
©2006 Elsevier B.V. All rights reserved.
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@ Good fit but with ten times less CO than expected from Tevatron do /dPr data
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NLO NRQCD up to RHICII

Abstract

We present an analysis of the existing data on charmonium hadro-production based on non-relativistic QCD (NRQCD) calculations at the
next-to-leading order (NLO). All the data on J/1 and ¥(2S) production in fixed-target experiments and on pp collisions at low energy are
included. We find that the amount of color-octet contribution needed to describe the data is about 1/10 of that found at the Tevatron.
©2006 Elsevier B.V. All rights reserved.

5

NRQCD cross section at NLO
103L  MRST2002

o(pN—> JAyX)  (nb/nucleon)

——  Central value: ju, = i = 1.5 1,
"""" Band : pp, i € [Ty, 41y ]

- Singlet contribution only

"\\\‘ L \\\\‘ L
10 10’

Vs (GeV)
@ Good fit but with ten times less CO than expected from Tevatron do /dPr data
@ CSM could describe the data alone (no uncertainty on CS shown; no surprise: see slide 6)
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Abstract

We present an analysis of the existing data on charmonium hadro-production based on non-relativistic QCD (NRQCD) calculations at the
next-to-leading order (NLO). All the data on J/1 and ¥(2S) production in fixed-target experiments and on pp collisions at low energy are
included. We find that the amount of color-octet contribution needed to describe the data is about 1/10 of that found at the Tevatron.
©2006 Elsevier B.V. All rights reserved.
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NRQCD cross section at NLO
103L  MRST2002

o(pN—> JAyX)  (nb/nucleon)

——  Central value: ju, = i = 1.5 1,
"""" Band : pp, i € [Ty, 41y ]

- Singlet contribution only

"\\\‘ L \\\\‘ L
10 10’

4 (GeV)
@ Good fit but with ten times less CO than expected from Tevatron do /dPr data
@ CSM could describe the data alone (no uncertainty on CS shown; no surprise: see slide 6)
@ No similar analysis for Y
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NLO NRQCD up to RHICII

Abstract

We present an analysis of the existing data on charmonium hadro-production based on non-relativistic QCD (NRQCD) calculations at the
next-to-leading order (NLO). All the data on J/1 and ¥(2S) production in fixed-target experiments and on pp collisions at low energy are
included. We find that the amount of color-octet contribution needed to describe the data is about 1/10 of that found at the Tevatron.

©2006 Elsevier B.V. All rights reserved.
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NRQCD cross section at NLO
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——  Central value: i =, = 15 1,
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- Singlet contribution only
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No similar analysis for Y
Never done for /s > 200 GeV
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NLO NRQCD up to RHICII

Abstract

We present an analysis of the existing data on charmonium hadro-production based on non-relativistic QCD (NRQCD) calculations at the
next-to-leading order (NLO). All the data on J/1 and ¥(2S) production in fixed-target experiments and on pp collisions at low energy are
included. We find that the amount of color-octet contribution needed to describe the data is about 1/10 of that found at the Tevatron.
©2006 Elsevier B.V. All rights reserved.

5

NRQCD cross section at NLO
103L  MRST2002

102

o(pN—> JAyX)  (nb/nucleon)

——  Central value: ju, = i = 1.5 1,
"""" Band : pp, i € [Ty, 41y ]

- Singlet contribution only

\\\‘ \\\\\‘ L
10 10’

i (GeV)
Good fit but with ten times less CO than expected from Tevatron do /dPr data
CSM could describe the data alone (no uncertainty on CS shown; no surprise: see slide 6)
No similar analysis for Y
Never done for /s > 200 GeV
Never updated with LDME:s fitted at NLO
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Our up-to-date NLO a

What we did[Y. Feng, JPL, ].X. Wang, EPJC (2015)75:313]

We used
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Our up-to-date NLO analysis

What we did[Y. Feng, JPL, ].X. Wang, EPJC (2015)75:313]

We used

@ FDC” after complete cross-check of the Petrelli ef al. results

*: FDC]J. -X. Wang, Nucl. Instrum. Meth. A 534 (2004) 241
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What we did[Y. Feng, JPL, ].X. Wang, EPJC (2015)75:313]
We used

@ FDC” after complete cross-check of the Petrelli ef al. results

*: FDC]J. -X. Wang, Nucl. Instrum. Meth. A 534 (2004) 241

@ only direct J/y, ¢ and Y(1S) yields
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Our up-to-date NLO analysis

What we did[Y. Feng, JPL, ].X. Wang, EPJC (2015)75:313]

We used

@ FDC” after complete cross-check of the Petrelli ef al. results

*: FDC]J. -X. Wang, Nucl. Instrum. Meth. A 534 (2004) 241

@ only direct J/y, ¢ and Y(1S) yields

@ Nota: in principle, we can also predict total-yield polarisation
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Our up-to-date NLO analysis

What we did[Y. Feng, JPL, ].X. Wang, EPJC (2015)75:313]
We used

@ FDC” after complete cross-check of the Petrelli ef al. results

*: FDC]J. -X. Wang, Nucl. Instrum. Meth. A 534 (2004) 241
@ only direct J/y, ¢ and Y(1S) yields
@ Nota: in principle, we can also predict total-yield polarisation
@ an updated data set with:

o only pp and pp data with more than 100 events (no pA data), only for y = 0

o CDF results after a small Py extrapolation from 1.5 GeV to 0
e LHC data

J.P. Lansberg (IPNO) Quarkonium Production in the LHC era January 25, 2019 42 /27



Our up-to-date NLO analysis

What we did[Y. Feng, JPL, ].X. Wang, EPJC (2015)75:313]

We used

@ FDC” after complete cross-check of the Petrelli ef al. results
*: FDC]J. -X. Wang, Nucl. Instrum. Meth. A 534 (2004) 241
@ only direct J/y, ¢ and Y(1S) yields
@ Nota: in principle, we can also predict total-yield polarisation
@ an updated data set with:

o only pp and pp data with more than 100 events (no pA data), only for y = 0

o CDF results after a small Py extrapolation from 1.5 GeV to 0
e LHC data

@ constant feed-down (FD) fractions
o Ejy =60 +10%
o Fy(s = 66 +10%
° F?{i(rlescizsws) =60+ 10%
o Uncertainty on F¥"*' combined in quadrature with that of data
Arguable but accounts for a possible energy dependence of the FD fraction
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Our up-to-date NLO analysis

What we did I1

We used LDME: fitted at NLO/one loop on the Py spectra

8 8 8
Ref. (0,,CPFD)y (0,08 (0, Csh)
(in GeV?) (in GeV?) (in GeV?)
—2.0x1073 7.8x10° 2 0
o ]/1// Y.-Q. Ma,et al. PRL 106 (2011) 042002. 2.1x1072 3.5 %1072 5.8x107°
41x1072 0 1.1x 1072
B. Gong,et al. PRL 110 (2013) 042002 —22x10" 97 %10~ —4.6x10°
M.Butenschoen, B.Kniehl. PRD (2011) 051501 —9.1x10°2 3.0x10™ 1.7 %10
8 8 8
Ref. (0409 CED) (0425 BT (0, 2y CsFT))
(in GeVS) (in GeV3) (in GeV3)
o 1//’ B. Gong,et al. PRL 110 (2013) 042002 95x10° —12x10° % 3.4x107°
—4.8x107 2.9x1072 0
Y.-Q. Ma,et al. PRL 106 (2011) 042002 7.9x107° 5.6x107° 3.2x107°
1.1x1072 0 3.9x107°
8 8 8
Ref. ©va CPID) (Oyasy (SID) (Oy(1s) CSIH)
o Y(IS) (in GeV?) (in GeVS) (in GeV3)
B. Gong, et al. PRL 112 (2014) 3, 032001. ~10.36 x 102 11.15 x 102 —41x102

[We have also added the fit of G.T. Bodwin, et al., PRL 113, 022001 (2014) even though it is based

on a fragmentation function approach]
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ur up-to-d

Results for the J/y

Ma — Buttenschoen

-+ PRD84(2011)051501(R)4

negative contribution

Wang -
T T T T T T T T
1000 | PRL110(2013)042002 _+ PRL108(2012)242004
&
<
2 100
2
g
53 10
]
8
negative contributionf
Fiecl= 60410 %
1 s L L L L L
T T
10
.
25 x
&g 1 - §
\ \ \ \ \ \
004 02 _ 1 5 004 02 _ 1 5
Vs (TeV) Vs (TeV)
CSM
1508 NLO
3S18 NLO
3PJ8 NLO
Total octet

L (IPNO) Quarkonium Production in the LHC era
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ur up-to-d

Results for the J/y

) ) Wang - Ma — Buttenschoen
@ First 2 fits: 10 times above the data ; ; ; ; ; ; ; ; ; ; ; ;
around 200 GeV — as Maltoni ef al. 1000 FPRL110(2013)042002 _+ PRL108(2012)242004 _ -+ PRD84(2011)051501(R)
negative contribution
2
& 400 E
H
Lt 1
3
negative contributionf
Fiecl= 60410 %
P . . i ! . A ! .
T T T T T
10 + 4
L=
25 e
&3 1 -7
! ! ! ! ! ! ! ! :
004 02 1 5 004 02_1 5 004 02 _1 5
Vs (TeV) Vs (TeV) Vs (TeV)
CSM = =imos
1S08 NLO
3S18 NLO -------
3PJ8 NLO
Total octet ------

Total octet + singlet
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Our up-to-date NLO an

Results for the J/y

@ First 2 fits: 10 times above the data

around 200 GeV - as Maltoni et al.
@ The third fit —which btw has the lowest

Pf[f"’— overshoots the least

@ The third fit is however the only which
does not account for the polarisation

data

J.P. Lansberg (IPNO) Quarkonium Production in the LHC era

— Buttenschoen

F PRL110(2013)042002 + PRL108(2012)242004_

=}
S

0 X Br (nb)

dogy iy,

negative contribution

Ratio over
central CSM

CSM ===
1S08 NLO
3S18 NLO -------
3PJ8 NLO
Total octet ------
Total octet + singlet
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Our up-to-date NLO analysis

Results for the J/y

Wan, - Ma - Buttenschoen
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CSM at one loop

In the previous analysis, the CS contribution to *S; production was only

appearing as a real-emission QCD correction at o
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CSM at one loop

In the previous analysis, the CS contribution to *S; production was only

appearing as a real-emission QCD correction at o

If we switch off the CO channels —or believe they are negligible—, the
tree-level/LO contribution for direct J/v is at o

Back in the early 80’s: C.-H. Chang, NPB172, 425 (1980); R. Baier & R. Riickl Z. Phys. C 19, 251(1983)
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In the previous analysis, the CS contribution to *S; production was only

appearing as a real-emission QCD correction at o

If we switch off the CO channels —or believe they are negligible—, the
tree-level/LO contribution for direct J/v is at o

Back in the early 80’s: C.-H. Chang, NPB172, 425 (1980); R. Baier & R. Riickl Z. Phys. C 19, 251(1983)

In fact, the total yield at one loop (up to i) can be computed since 2007

See our plot of do/dy on slide 7 based on J.Campbell, F. Maltoni, F. Tramontano, PRL 98:252002,2007
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CSM at one loop

In the previous analysis, the CS contribution to *S; production was only

appearing as a real-emission QCD correction at o

If we switch off the CO channels —or believe they are negligible—, the
tree-level/LO contribution for direct J/v is at o
Back in the early 80’s: C.-H. Chang, NPB172, 425 (1980); R. Baier & R. Riickl Z. Phys. C 19, 251(1983)
In fact, the total yield at one loop (up to i) can be computed since 2007
See our plot of do/dy on slide 7 based on J.Campbell, F. Maltoni, F. Tramontano, PRL 98:252002,2007
One can repeat this for 'S, production for which we have closed-form results for
the hard part at one loop

A. Petrelli, M. Cacciari, M. Greco, F. Maltoni and M. L. Mangano, Nucl. Phys. B 514 (1998) 245
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.e. NRQCD with v — 0)

CSM at one loop

In the previous analysis, the CS contribution to *S; production was only

appearing as a real-emission QCD correction at o

If we switch off the CO channels —or believe they are negligible—, the
tree-level/LO contribution for direct J/v is at o
Back in the early 80’s: C.-H. Chang, NPB172, 425 (1980); R. Baier & R. Riickl Z. Phys. C 19, 251(1983)
In fact, the total yield at one loop (up to i) can be computed since 2007
See our plot of do/dy on slide 7 based on J.Campbell, F. Maltoni, F. Tramontano, PRL 98:252002,2007
One can repeat this for 'S, production for which we have closed-form results for
the hard part at one loop

A. Petrelli, M. Cacciari, M. Greco, F. Maltoni and M. L. Mangano, Nucl. Phys. B 514 (1998) 245

We checked these with FDC
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CSM at one loop: Results
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one (i.e. NRQCD with v — 0)

CSM at one loop: Results
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“SM alone (i.e. NRQCD w:

CSM at one loop: Results
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Same weird energy behavior as observed for the 3P][8] channel (and to a less
extent for IS([)S] channel)

Non negative cross sections at large Vs only for up > ur ?
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for CSM alone (i.e. NRQCD with v — 0)

CSM at one loop: Results
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Same weird energy behavior as observed for the pP;

extent for IS([)S] channel)

channel (and to a less

Non negative cross sections at large /s only for ug > pp ?
Is it due to ISR, FSR ? Is NRQCD simply not holding at low Pr ?
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NLO analysis for CSM alone (i.e. NRQCD with v — 0)

CSM at one loop for 1S,

@ At LO, 5q production occurs without final-state gluon emission
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NLO analysis for CSM alone (i.e. NRQCD with v — 0)

CSM at one loop for 1S,

@ At LO, 5q production occurs without final-state gluon emission
@ Empirical way to see if the pathological energy behaviour of both CO and CS for
*S; may be due to final state emissions, typical of quarkonium production
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for CSM alone (i.e. NRQCD with v — 0)

CSM at one loop for 1S,

@ At LO, 5q production occurs without final-state gluon emission

@ Empirical way to see if the pathological energy behaviour of both CO and CS for
*S; may be due to final state emissions, typical of quarkonium production

@ Closed-form results for the hard part at one loop exist [see the appendix C Egs (C.25), (C.26),

(C.32) and (C.35)] of A. Petrelli, M. Cacciari, M. Greco, F. Maltoni and M. L. Mangano, Nucl. Phys. B 514 (1998) 245
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NLO analysis for CSM alone (i.e. NRQCD with v — 0)

CSM at one loop for 1S,

@ At LO, 5q production occurs without final-state gluon emission

@ Empirical way to see if the pathological energy behaviour of both CO and CS for
*S; may be due to final state emissions, typical of quarkonium production

@ Closed-form results for the hard part at one loop exist [see the appendix C Egs (C.25), (C.26),
(C.32) and (C.35)] of A. Petrelli, M. Cacciari, M. Greco, F. Maltoni and M. L. Mangano, Nucl. Phys. B 514 (1998) 245
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NLO analysis for CSM alone (i.e. NRQCD with v — 0)

CSM at one loop for 1S,

@ At LO, 5q production occurs without final-state gluon emission

@ Empirical way to see if the pathological energy behaviour of both CO and CS for
*S; may be due to final state emissions, typical of quarkonium production

@ Closed-form results for the hard part at one loop exist [see the appendix C Egs (C.25), (C.26),
(C.32) and (C.35)] of A. Petrelli, M. Cacciari, M. Greco, F. Maltoni and M. L. Mangano, Nucl. Phys. B 514 (1998) 245
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NLO analysis for CSM alone (i.e. NRQCD with v — 0)

CSM at one loop for 1S,

@ At LO, 5q production occurs without final-state gluon emission

@ Empirical way to see if the pathological energy behaviour of both CO and CS for
*S; may be due to final state emissions, typical of quarkonium production

@ Closed-form results for the hard part at one loop exist [see the appendix C Egs (C.25), (C.26),
(C.32) and (C.35)] of A. Petrelli, M. Cacciari, M. Greco, F. Maltoni and M. L. Mangano, Nucl. Phys. B 514 (1998) 245

e Same happens with the 'SL*

@ No sign of negative terms in the TMD factorisation approach up to one loop

M. Echevarria, T. Kasemets, JPL, C. Pisano A. Signori (in progress); J.P. Ma, J.X. Wang, S. Zhao, PRD 88 (2013) 014027
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one (i.e. NRQCD with v — 0)

A glimmer of hope: Low Pr xo1/ xQ2

LHCb, JHEP 10(2013)115 & JHEP 1410 (2014) 88 ; CMS, EPJC, 72, 2257 (2012); ATLAS, JHEP 07(2014)154
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for CSM alone (i.e. NRQCD with v — 0)

A glimmer of hope: Low Pr xo1/ xQ2

LHCb, JHEP 10(2013)115 & JHEP 1410 (2014) 88 ; CMS, EPJC, 72, 2257 (2012); ATLAS, JHEP 07(2014)154

@ Atlow Py, test of yq suppression following the Landau-Yang theorem
@ Atlarger Pr, test of production mechanism of yq; (not of J/y or Y)
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NLO analysis for CSM alone (i.e. NRQCD with v — 0)

A glimmer of hope: Low Pr xo1/ xQ2

LHCb, JHEP 10(2013)115 & JHEP 1410 (2014) 88 ; CMS, EPJC, 72, 2257 (2012); ATLAS, JHEP 07(2014)154

@ Atlow Py, test of yq suppression following the Landau-Yang theorem
@ Atlarger Pr, test of production mechanism of yq; (not of J/y or Y)
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NLO analysis for CSM alone (i.e. NRQCD with v — 0)

A glimmer of hope: Low Pr xo1/ xQ2

LHCb, JHEP 10(2013)115 & JHEP 1410 (2014) 88 ; CMS, EPJC, 72, 2257 (2012); ATLAS, JHEP 07(2014)154

@ Atlow Py, test of yq suppression following the Landau-Yang theorem
@ Atlarger Pr, test of production mechanism of yq; (not of J/y or Y)
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NLO analysis for CSM alone (i.e. NRQCD with v — 0)

A glimmer of hope: Low Pr xo1/ xQ2

LHCb, JHEP 10(2013)115 & JHEP 1410 (2014) 88 ; CMS, EPJC, 72, 2257 (2012); ATLAS, JHEP 07(2014)154

@ Atlow Py, test of yq suppression following the Landau-Yang theorem
@ Atlarger Pr, test of production mechanism of yq; (not of J/y or Y)
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@ The Landau-Yang suppression shows up for y. in the Low Pr/m, region
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NLO analysis for CSM alone (i.e. NRQCD with v — 0)

A glimmer of hope: Low Pr xo1/ xQ2

LHCb, JHEP 10(2013)115 & JHEP 1410 (2014) 88 ; CMS, EPJC, 72, 2257 (2012); ATLAS, JHEP 07(2014)154

@ Atlow Py, test of yq suppression following the Landau-Yang theorem
@ Atlarger Pr, test of production mechanism of yq; (not of J/y or Y)
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@ The Landau-Yang suppression shows up for y. in the Low Pr/m, region
@ | The nature (quantum #) of the produced final state seems still relevant ! ‘
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Energy dependence of the CEM and of its NRQCD Ersatz

Basics of the Colour Evaporation Model
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Energy dependence of the CEM and of its NRQCD Ersatz

Basics of the Colour Evaporation Model

@ Based on Quark-Hadron duality argument, one writes

H. Fritzsch, PLB 67 (1977) 217; F. Halzen, PLB 69 (1977) 105

5 dO'(N)LO
(N)LO, direct _ pdirect %04 dm
% =to “dm. M
ZVHQ deQ
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Basics of the Colour Evaporation Model

@ Based on Quark-Hadron duality argument, one writes

H. Fritzsch, PLB 67 (1977) 217; F. Halzen, PLB 69 (1977) 105

5 dO'(N)LO
(N)LO, direct _ pdirect %04 dm
% =to “dm. M
ZVHQ deQ

o USiIlg a simple statistical counting [X; runs over all the charmonium states below the DD threshold]
J. F. Amundson,et al. PLB 372 (1996)

direct _ 1 21‘!’ +1 - i
Tl 9 Zi(zji + 1) 45

>

most of the data could accounted for !
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@ Based on Quark-Hadron duality argument, one writes

H. Fritzsch, PLB 67 (1977) 217; F. Halzen, PLB 69 (1977) 105

5 dO'(N)LO
(N)LO, direct _ pdirect %04 dm
% =to “dm. M
ZVHQ deQ

o USiIlg a simple statistical counting [X; runs over all the charmonium states below the DD threshold]
J. F. Amundson,et al. PLB 372 (1996)

direct _ 1 21‘!’ +1 - i
Tl 9 Zi(zji + 1) 45

>

most of the data could accounted for !

@ Ramona Vogt’s fits roughly give the same number for direct J/y’s
M. Bedjidian, [..], R. Vogt et al., hep-ph/0311048
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Basics of the Colour Evaporation Model

@ Based on Quark-Hadron duality argument, one writes

H. Fritzsch, PLB 67 (1977) 217; F. Halzen, PLB 69 (1977) 105

5 dO'(N)LO
(N)LO, direct _ pdirect %04 dm
% =to “dm. M
ZVHQ deQ

o USiIlg a simple statistical counting [X; runs over all the charmonium states below the DD threshold]
J. F. Amundson,et al. PLB 372 (1996)

direct _ 1 21‘!’ +1 - i
Tl 9 Zi(zji + 1) 45

>

most of the data could accounted for !

@ Ramona Vogt’s fits roughly give the same number for direct J/y’s
M. Bedjidian, [..], R. Vogt et al., hep-ph/0311048

@ It can easily be check by MCFM at NLO for instance http://mctm. £nal.gov/
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NRQCD Ersatz of the CEM
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Energy dependence of the CEM and of its NRQCD Ersatz

NRQCD Ersatz of the CEM

@ In 2005, Bodwin, Braaten and Lee derived relations between NRQCD LDMEs
provided that the CEM is interpreted as part NRQCD

G.T. Bodwin, E. Braaten, J. Lee, PRD 72 (2005) 014004
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@ These violate the velocity scaling rules also violated by the NLO fits btw
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NRQCD Ersatz of the CEM

@ In 2005, Bodwin, Braaten and Lee derived relations between NRQCD LDMEs
provided that the CEM is interpreted as part NRQCD

G.T. Bodwin, E. Braaten, J. Lee, PRD 72 (2005) 014004
@ These violate the velocity scaling rules also violated by the NLO fits btw

@ AtLO in v, one has
(0,CSI1)) =3 x (055, (),
(0,(5E7)) =5 x (O, (1)), )
(O, (S1*)) =4 x (05, (SI)).
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NRQCD Ersatz of the CEM

@ In 2005, Bodwin, Braaten and Lee derived relations between NRQCD LDMEs
provided that the CEM is interpreted as part NRQCD

G.T. Bodwin, E. Braaten, J. Lee, PRD 72 (2005) 014004
@ These violate the velocity scaling rules also violated by the NLO fits btw

@ AtLO in v, one has
(0,CSI1)) =3 x (055, (),
(0,(5E7)) =5 x (O, (1)), )
(O, (S1*)) =4 x (05, (SI)).

° If as it should be in NRQCD, (Oss, (°S; 1])) is the usual CS LDME,
. e (2] +1) |R(0) |, everything is fixed
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Energy dependence of the CEM and of its NRQCD Ersatz

CEM results
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@ NRQCD-like CEM badly overshoots the data
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CEM results
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@ NRQCD-like CEM badly overshoots the data
o Expected since CO LDME:s are as large as the CS, whereas the hard parts
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CEM results
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@ NRQCD-like CEM badly overshoots the data
o Expected since CO LDME:s are as large as the CS, whereas the hard parts

tend to be larger.
o Weird energy behaviour
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CEM results
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@ NRQCD-like CEM badly overshoots the data
o Expected since CO LDME:s are as large as the CS, whereas the hard parts
tend to be larger.
o Weird energy behaviour
e Conventional CEM does a pretty good job
o No th. uncertainty shown
o “Natural” value of F}i/i;f” is ok
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