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Defining Parton Distribution Functions (PDFs)

m Since the discovery of quarks in DIS experiments at SLAC, PDFs always
occupied a key role in HEP
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Defining Parton Distribution Functions (PDFs)

Since the discovery of quarks in DIS experiments at SLAC, PDFs always
occupied a key role in HEP

Large international effort aiming at their measurement

The target in the DIS experiments can be seen as a stream of partons
carrying a fraction z of the longitudinal momentum.

The momentum distribution functions of partons within the proton are
called Parton Distribution Functions (PDFs).

They represent probability densities to find a parton carrying a fraction x of

the nucleon momentum at squared energy scale Q% = —¢2.
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PDFs are of paramount importance because ...

m the uncertainties in PDFs are the dominant theoretical uncertainties in

Higgs couplings, as and the mass of the W boson.
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PDFs are of paramount importance because ...

m the uncertainties in PDFs are the dominant theoretical uncertainties in

Higgs couplings, as and the mass of the W boson.

m Beyond the LHC, PDFs play an important role, for instance in astroparticle
physics, such as for the accurate predictions for signal and background
events at ultrahigh energy neutrino telescopes.

m PDFs will keep playing an important role for any future high energy collider
involving hadrons in the initial state. Therefore improving our
understanding of PDFs also strengthens the physics potential of such future

coIIiders. Phys.Rept. 742 (2018) 1-121.
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From DIS to PDFs via factorization

m The measurement of PDFs is made possible due to factorization theorems
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m The measurement of PDFs is made possible due to factorization theorems

m Intuitively, factorization theorems (colins, soper and sterman (1089)) tell us that the same
universal non-perturbative objects (the PDFs), representing long distance
physics, can be combined with many short-distance calculations in QCD to
give the cross-sections of various processes.
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From DIS to PDFs via factorization

m The measurement of PDFs is made possible due to factorization theorems

m Intuitively, factorization theorems (colins, soper and sterman (1089)) tell us that the same
universal non-perturbative objects (the PDFs), representing long distance
physics, can be combined with many short-distance calculations in QCD to
give the cross-sections of various processes.

» 0 = f ® H, where f are the PDFs, H is the hard perturbative part and
® is convolution.

» PDFs truly characterize the hadronic target

» PDFs are essentially non-perturbative
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m The natural ab-initio method to
study QCD non-perturbatively is on
the lattice. But ...

a

quark
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— m The natural ab-initio method to
a study QCD non-perturbatively is on
1 1 the lattice. But ...
T m PDFs are defined as an expectation

value of a bilocal operator evaluated
— along a light-like line.

m Clearly, we can not evaluate this on
— a Euclidean set-up.

quark
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Lattice traditionally

m Mellin moments of PDFs via matrix elements (ME) of twist—2 operators.
m Light cone PDF

FO(¢ fdw‘ TIEPT(PIT(0,w, 0.0) W (W™, 007+ 274 (0)| P)e

where  W(w™,0) = Pexp {—igo fg”ﬁ dy= AT (0,y7,07)T,

m Moment are defined as

o) = [ e 199 + (-1 O] - / a1 19

related to local ME (P|Of'#"|P) = Qa(()n)(P“l...P“" — traces) where

_ A(I,
Opirbn = Z'"_lqp(())y{“lD“’?...D”"}Ew(()) — traces
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Lattice traditionally

m Would not be an issue if every moment were accessible because a probability

distribution is completely determined once all its moments are known.

m These studies are limited to the first few (three) moments due to

» Bad signal to noise ratio

» Power-divergent mixing on the lattice (discretized space-time does not

possess the full rotational symmetry of the continuum).
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Global PDF fits

m The first principle calculations are currently being tested and worked out ...

m Usual determination of PDFs is performed by fitting experimental data from
several hard scattering cross sections (I-p and p-p collisions).

m Combining the most PDF-sensitive data and the highest precision QCD and
EW calculations (always assuming that SM holds) and employing a
statistically robust fitting methodology.

m Can achieve high precision for the cases that data are abundant.
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Determination of PDFs from Experiment

NNLO, Q = 100 GeV NNLO, Q =100 GeV
T

1 NNPDF3.1 !

% CT14

I I I
,4 = 2 =
10 10 QD 10

NNLO, Q = 100 GeV NNLO, Q = 100 GeV

------ NNPDF3.1 !

777 CT14

Global fits to experimental data Parton distributions and lattice QCD calculations: a community white paper arXiv

1711.07916
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Light-like is a NO-GO

Hadronic Tensor Methods

m “Light-like" separated Hadronic Tensor « r i et al PhysRev.Lett. 72 (1994), A J. Chambers et ol

Phys.Rev.Lett. 118 (2017)
loffe Time Pseudo Distribution Methods
| quasi—PDFs (X. Ji Phys.Rev.Lett. 110, (2013))
| pSEUdO-PDFS (A. Radyushkin Phys.Lett. B767 (2017))

Similarly to a global QCD analysis of high energy scattering data, PDFs can
also be extracted from analyzing data generated by lattice-QCD calculation

of good lattice cross-sections v.-q. ma and 3. Qiu Phys. Rev. Lett. 120 (2018)
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Formalism

Computing PDFs in LQCD we start from the equal time hadronic matrix
element with the quark and anti-quark fields separated by a finite distance.

For non-singlet parton densities the matrix element
M (z,p) = (p|t(0)7* E(0, 2 A)7s9(2) p)

where E(O, z; A) is the 0 — z straight-line gauge link in the fundamental
representation, 73 is the flavor Pauli matrix, and v* is a gamma matrix. We

can decompose the matrix element due to Lorentz invariance as

M (z2,p) =20 My(—(2p), —2°) + 2" M.(~(2p), —2%)
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Formalism

m From the M,,(—(2p), —22) part the twist-2 contribution to PDFs can be
obtained in the limit 22 — 0.

m By taking z = (0,0,0, z3), « in the temporal direction i.e. &« =0, and the
hadron momentum p = (p°,0,0,p) the 2“-part drops out.

m The Lorentz invariant quantity v = —(zp), is the "loffe time” (. L offe. Phys. Lett

30B, 123 (1969)) A nd

(Pl(0) 7" E(0, 2; A)ms(2)|p) = 20" M, (v, 23)
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Formalism

m The quasi-PDF Q(z, p?) is related to M, (v, 23) by

1

o | e M)

Q(z,p?) =

Quasi PDF mixes invariant scales until p, is effectively large enough
m While the pseudo-PDF has fixed invariant scale dependence

P(z,22) / dv e M, (v, 23)

23

p3 — 00
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Formalism

loffe time PDFs M(v, 2z3) defined at a scale y? = 4e=27% /22 (at leading log
level) are the Fourier transform of regular PDFs f(, t1?). (1 satisy snd v Braon, nucl
Phys. B311, 541 (1988), V. Braun, et. al Phys. Rev. D 51, 6036 (1995))

1

M(v, 23) = / da f(x,1/23)e™

-1
Scale dependence of the loffe time PDF derived from the DGLAP evolution
of the regular PDFs.

loffe time PDFs evolution equation
D M2y =~ /1duB( )M (uv, 22)
: = —— V.
dlnz3 8 or ¥ 0 “ w3

with B(u) = [llt—“z] , Cp =4/3, and B(u) is the LO evolution kernel for

u

the non—singlet quark PDF (v. Braun, et. al Phys. Rev. D 51, 6036 (1995))
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Obtaining the loffe time PDF

23— 0= My(v,22) = M(v, 23) + O(23)

But.... large O(z3) corrections prohibit the extraction.
Conservation of the vector current implies M, (0, 23) = 1 + O(23),
but in a ratio 23 corrections (related to the transverse structure of the

hadron) might cancel (A. Radyushkin Phys.Lett. B767 (2017))

m Much smaller O(22) corrections and therefore this ratio could be used to

extract the loffe time PDFs

m All UV singularities are exactly cancelled and when computed in lattice

QCD it can be extrapolated to the continuum limit at fixed v and 22.
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Numerical implementation

First case Study in an unphysical SEtUP Karpie, Orginos, Radyushkin SZ, Phys.Rev. D96 (2017) no.9, 094503
m Quenched approximation

m 323 x 64 lattices with a = 0.093fm.

m m, = 60IMeV and my = 1411MeV

Now employing dynamical ensembles

a(fm) Me(MeV) B | I*xT

0.127(2) 440 6.1 243 x 64
0.127(2) 440 6.1 | 323 x96
0.094(1) 400 6.3 | 32°x64
0.094(1) 280 6.3 | 32°x64
0.094(1) 172 6.3 | 643 x 128

Table: Parameters for the lattices generated by the JLab/W&M collaboration using 2+1 flavors of clover Wilson
fermions and a tree-level tadpole-improved Symanzik gauge action. The lattice spacings, a, are estimated using the
Wilson flow scale wq. Stout smearing implemented in the fermion action makes the tadpole corrected tree-level clover
coefficient cgyy used, to be very close to the value determined non-pertubatively with the Schrédinger functional method
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Results for the Re and Im parts of 9(v, 23)

m Curves represent Re and Im Fourier transforms of ¢, (z)=32/z(1 — z)%.
m Considering CP even and odd combinations
» even: q_(z) = f(x) + f(—2) = q(x) — 4(x) = qu(x)
> odd: ¢ (2) = f(z) = f(—2) = q¢(2) + q(2) = qu(z) + 2(x)
Savvas Zafeiropoulos
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Curves represent the Im Fourier transforms of ¢,(x) = ¢(x) — g(x) and

Results for the Im part of M (v, 23)

Im M (v, 23)
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0.6

0.4

0.2
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Im 9 (v, 23)

04 (2) = q(2) + 4(x) = qu(x) + 24(x) respectively.

The agreement with the data is strongly improved if we use a non-vanishing

antiquark contribution, namely g(z) = a(z) + d(z) = 0.07[20z(1 — x)3].
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Results for the Re and Im parts of 9(v, 23)

m Data as function of the loffe time. A residual z3-dependence can be seen.

m This is more visible when, for a particular v we have several data points

corresponding to different values of z3.

m Different values of 23 for the same v correspond to the loffe time

distribution at different scales.
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Residual z3-dependence

m Is the residual scatter in the data points consistent with evolution? By
solving the evolution equation at LO, the loffe time PDF at z} is related to

the one at z3 by

2 a !
M(v, 2/3)=M(v, 22) — gﬁln(zg/zg)/ du B(u) M (uv, 23)
™ 0

m Only applicable at small z3
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Residual z3-dependence

m Is the residual scatter in the data points consistent with evolution? By
solving the evolution equation at LO, the loffe time PDF at z} is related to

the one at z3 by

2 a !
M(v, 2/3)=M(v, 22) — gﬁln(zg/zg)/ du B(u) M (uv, 23)
™ 0

m Only applicable at small z3

m Check its effect using data at values of z3 < 4a corresponding to energy

scales larger than 500 MeV.
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Residual z3-dependence

m Is the residual scatter in the data points consistent with evolution? By
solving the evolution equation at LO, the loffe time PDF at z} is related to

the one at z3 by

2 a !
M(v, 2/3)=M(v, 22) — gﬁln(zg/zg)/ du B(u) M (uv, 23)
™ 0

m Only applicable at small z3

m Check its effect using data at values of z3 < 4a corresponding to energy

scales larger than 500 MeV.

m We fix the point z} at the value zp = 2a corresponding, at leading

logarithm level, to the MS-scheme scale 1o =1 GeV and evolve the rest of

the points to that scale.
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Before and after evolution

s . 1

°o 2 e o an 2
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The ratio M(v, 23) for for z3/a = 1,2, 3, and 4. LHS: Data before evolution.
RHS: Data after evolution. The reduction in scatter indicates that evolution
collapses all data to the same universal curve.
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Before and after evolution
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The ratio M(v, 23) for for z3/a = 1,2, 3, and 4. LHS: Data before evolution.
RHS: Data after evolution. The reduction in scatter indicates that evolution
collapses all data to the same universal curve.
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Comparison to global fits

— 5
e ReM(v, z5)
oo,
«‘.\ 4
0.8 L == MMHT g
LN E=8 NNPDF  ;?=4GeV?|
0.6 N 3
04 \:
. 2
0.2 \\
- 1
0 S —
[¢
-0.2 1% 0.2 0.4 0.6 0.8 1.0
0 2 4 6 8 10 12 T

LHS: Data points for Re 9 (v, 23) with z3 < 10a evolved to z3 = 2a. By fitting
these evolved points with a cosine FT of ¢,(z) = N(a,b)z*(1 — z)® we obtain

a = 0.36(6) and b = 3.95(22) (statistical errors). RHS: Curve for u,(z) — d(z)
built from the evolved data shown in the left panel and treated as corresponding to
the u? =1 GeV? scale; then evolved to the reference point ;2 = 4 GeV? of the
global fits.
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Sanity checks vs other lattice results

m One can try to extract the lowest PDF moments from our data and
compare with the lattice literature aco-sr coliaboration Phys Rev. D53 (1996) 2317-2325

m With the Wilson coefficients computed we can now obtain the MS
moments up to O(a?, 2?) directly from the reduced function (v, 22) as

m () = (<) e | +0(Rad)

m The method introduced in karpie, orginos, sz, JHEP 1811 (2018) 178 @avoids mixing and allows

a priori the extraction of any moment.

<1>,,,:2 GeV
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Reconstruction

m Parton distribution functions (PDF) or distribution amplitudes (DA) may be
defined in lattice QCD by inverting the quasi-Fourier transform of a certain

class of hadronic position space matrix elements.
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Reconstruction

m Parton distribution functions (PDF) or distribution amplitudes (DA) may be
defined in lattice QCD by inverting the quasi-Fourier transform of a certain
class of hadronic position space matrix elements.

m One particular example are the loffe-time PDFs 9Mig, which are related to

the physical PDF via the integral relation

1
Mr(v, u?) = / dx cos(vz) qu(z, pu?) .
0
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Reconstruction

m Parton distribution functions (PDF) or distribution amplitudes (DA) may be
defined in lattice QCD by inverting the quasi-Fourier transform of a certain
class of hadronic position space matrix elements.

m One particular example are the loffe-time PDFs 9Mig, which are related to

the physical PDF via the integral relation

1
Mr(v, u?) = / dx cos(vz) qu(z, pu?) .
0

m Here it is assumed that the lattice computed matrix element is converted to
the M S loffe-time PDF at a scale 12, using a perturbative kernel as

discussed in Radyushkin (Phys.Rev. D98 (2018) no.1, 014019 ), Zhang et al Phys.Rev. D97 (2018) no.7, 074508

N
@
@
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Reconstruction

m Parton distribution functions (PDF) or distribution amplitudes (DA) may be
defined in lattice QCD by inverting the quasi-Fourier transform of a certain
class of hadronic position space matrix elements.

m One particular example are the loffe-time PDFs 9Mig, which are related to

the physical PDF via the integral relation

1
Mr(v, u?) = / dx cos(vz) qu(z, pu?) .
0

m Here it is assumed that the lattice computed matrix element is converted to
the M S loffe-time PDF at a scale 12, using a perturbative kernel as
discussed in Radyushkin (Phys.Rev. D98 (2018) no.1, 014019 ), Zhang et al Phys.Rev. D97 (2018) no.7, 074508

m The task at hand is then to reconstruct the PDF ¢, (x, u?) given a limited
set of simulated data for Mz (v, u?).
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Reconstruction

m There exist two challenges to this endeavor, the first being that the integral
in question does not extend over the full Brillouin zone, the second that in

practice only a small number of points along v can be computed.
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Reconstruction

m There exist two challenges to this endeavor, the first being that the integral
in question does not extend over the full Brillouin zone, the second that in

practice only a small number of points along v can be computed.

m As we will discuss in more detail below, taken together these issues render
the extraction highly ill-posed and we explore different regularization
strategies on how to nevertheless reliably estimate the PDF from the data

at hand. Karpie, Orginos, Rothkopf, SZ, arXiv:1901.05408
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Naive Reconstruction

m Discretize the integral, employing the trapezoid integration rule
1 k
L] Ax:N—w, a:k:/anc:N—m
N,—1

1
Mp(v) = L cos(vao) go(zo)+ Z ox cos(vry) Q1;(-77k>+§ cos(ven, ) gu(xn,)
k=1
We can determine the unknown values of the function g,(z) by solving a

simple linear system of equations.

m Defining my, = My () where v are the values of the loffe time for which
data is available and g be the vector with components the unknown values
of qy(x) i.e. qx = gu(xk). Our problem is cast in a matrix equation
m=2¢C-q,

m The conditioning of the problem is easily elucidated by considering the

eigenvalues of the matrix €.
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Naive Reconstruction

10° T T T T T T T
1 0 AR ;,\
0 T+, ]
105 £ + 3
1010 F 3
—_ 1075 F E
=102 f 3
1025 F xxx 3
30 £ v=[0,10] E
10 v=[0.20] Xy ]
1035 | v=[0,100] X E
10-40 \):[OI,40T[] 1 1 1 HTWW‘
0 5 10 15 20 25 30 35 40

k

Eigenvalues )\, of the kernel matrix for various discretization intervals.
Only for the case corresponding to a genuine discrete Fourier transform

v = [0,40mn] all eigenvalues remain of order unity. The realistic case of

v = [0, 20] already shows a significant degradation of the spectrum.
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Naive Reconstruction

0.2 0.2 0.2 T
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Results for the direct inversion for different discretization intervals
(left v = [0,407], center v = [0,100], right v = [0, 20]). Note the different
size of the relative errors needed, to obtain a well behaved result (left
ADIRR/ZDIR = 10_2, center ASDTR/ED?R = 10_5, right AE))?R/DZRR = 10_6).
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Advanced PDF Reconstructions

Bayesian Methods

m Maximum Entropy Method

m Backus-Gilbert algorithm

m an HMC evaluation of the 2

m a Neural Network reconstruction
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Bayesian Reconstruction

6 T T T T 2 T T T T
5 mock PDF A -
BR w/ best fit m(x) 151 T
ar statistical ] y N
. uncertainty .
X X
< 3r . = 1 .
=4 m dependence =4 mock PDE B
2+ - BR W/ best fit m(x) s—
05 F statistical -
uncertainty
1k i
m dependence
0 0 L L L L
0 1 0 0.2 0.4 0.6 0.8 1
X X

x-space PDF'’s reconstructed using the BR method from N, = 10 loffe-time
data points on the interval v = [0, 20] The plots in the left column denote
the results for mock data based on a phenomenological PDF
(NNPDF31_nnlo_as_0118), while the right column arises from a scenario
where ¢(0) is finite.
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Maximum Entropy Method Reconstruction

10 T T T T
mock PDF A
8 Vmax=20 N,=10 MEM w/ best fit m === |
statistical
uncertainty
6 m dependence i
2
ES
o
4 i
2 - -~
0 L L L
0 0.2 0.4 0.6 0.8

X

4 T T T T

35 mock PDF B
Vmax=20 Ny=10 MEM w/ best fit m =

3t statistical

uncertainty

25 m dependence

qu(X)

x-space PDF's reconstructed using the MEM method from N, = 10

loffe-time data points on the interval v = [0,20] The plots in the left column

denote the results for mock data based on a phenomenological PDF
(NNPDF31_nnlo_as_0118), while the right column arises from a scenario

where ¢(0) is finite.
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Backus-Gilbert reconstruction
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q(x)

10

HMC Reconstruction

Mock PDF A

4.0

—— restricted x? sampling

3.51

Mock PDF B
—— restricted x? sampling
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Neural Network Reconstruction
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Left: Original data points (red) not visible. Red band representing errors on
the original data points. Reconstructed data points (blue). Right: Original
PDF (blue). Reconstructed PDF (red).
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Conclusions and outlook

m PDFs are needed as theoretical inputs to all hadron scattering experiments

and in some cases are the largest theory uncertainty.
m The lattice community is by now able to provide ab-initio determinations of
PDFs without theoretical obstructions.

m The interplay between lattice QCD and global fits physrev et 120 (2018) no.15, 152502 ,
demonstrated that the impact of lattice calculations of both the lowest
Mellin moments and the z-dependence of PDFs could significantly reduce
uncertainties in global PDF fits. For example, lattice determinations of the
d(z,Q?) PDF at moderate values of x with uncertainties of 5— 10% could

reduce the corresponding PDF uncertainties by up to 30—50%.
m Also important in the search of New Physics physrept. 722 (2018) 1121,
m What next? Polarized, Transversity, gluon PDFs and GPDs eventually ...

m Many thanks for your attention!!!

@
o
Py
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Preliminary results with unquenched lattices

loffe Time Distribution loffe Time Distribution
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V = 243 x 64, with m, = 440MeV and a = 0.127fm

Savvas Zafeiropoulos Lattice studies of pseudo-PDFs




Preliminary results with unquenched lattices

loffe Time Distribution

loffe Time Distribution

EZ_E 0.6 J Ed Gy
I i
Preliminary *1- 1 Preliminary

V = 323 x 64, with m,

Savvas Zafeiropoulos

= 440MeV and a = 0.127fm

Lattice studies of pseudo-PDFs




Unquenched results - matched to M S

- Matching of pITD and ITD - Matching of pITD and ITD
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Preliminary results with unquenched lattices

Finite Volume Comparison
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A comparison between two different volumes. Two Current matrix elements
can have very large finite volume corrections (sriceiio et al Phys Rev. D98 (2018) 014511, Bali et a1

(2018) 1807.03073 )
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Comparison to global fits

12 uy(z) — dy(x)
— 5
2 This work ji2=1GeV?
17900y, Re 9:7((1/, Z()) #== This work ;’=1GeV?
1 = CJ V7
N
0.8 LY
N 2
06 N N
0.4 \"
. \ 2
0.2 \
1
0 \ —
[¢
-0.2 1% 0.2 0.4 0.6 0.8 1.0
0 2 4 6 8 10 12 €T

LHS: Data points for Re 9 (v, 23) with z3 < 10a evolved to z3 = 2a. By fitting
these evolved points with a cosine FT of ¢,(z) = N(a,b)z*(1 — x)® we obtain

a = 0.36(6) and b = 3.95(22) (statistical errors). RHS: Curve for u,(z) — dy ()
built from the evolved data shown in the left panel and treated as corresponding to
the 2 = 1 GeV? scale; then evolved to the reference point u? = 4 GeV? of the
global fits. 1-loop matching to MS still to be done on our data

A. Radyushkin 1710.08813, Zhang et al 1801.03023, Izubuchi et al 1801.03917
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More on evolution

0 2 4 6 8
z3/a

m LO evolution cannot be extended to very low scales.

m It is known that evolution stops below a certain scale (by observing our
data we infer that this is the case for z5 > 6a.)

m Adopt an evolution that leaves the PDF unchanged for length scales above
z3 = 6a and use the leading perturbative evolution formula to evolve to
smaller z3 scales.
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Numerical implementation

FoIIowing C. Bouchard et.al Phys. Rev. D 96, no. 1, 014504 (2017) , W€ compute a regular nucleon two

point function

Cp(t) = Np(H)N(0)) ,
05 (1) = £ N (00 (2. 7N (0)
with — O%(z,t) = (0, )73 E(0, z; A) (2, t)
Proton momentum and displacement of the quark fields along the % axis

"D 2B
Mg (23p, 23;1) = —2 -2
(2P 255l) = =5 C, ()

Extract the desired ME 7 at large Euclidean time separation as

J (23p,23)

i = limy 00 Mgt (23, 22;t) , where p° is the energy of the nucleon.
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Results for the nucleon dispersion relation

0.8

0.7 e
c

0.6 - - - pa

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

Energies and momenta are in lattice units. The solid line is the continuum
dispersion relation (not a fit) while the errorband is an indication of the
statistical error of the lattice nucleon energies
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Typical fits used to extract the reduced matrix element (here p = 27/L - 2 and
2z =4 (LHS) and p = 27/L - 3 and z = 8 (RHS)). The average x* per degree of
freedom was O(1). All fits are performed with the full covariance matrix and the
error bars are determined with the jackknife method.
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Renormalization

m In a series of articles potsenko Nuc Phys. B169 (1980) 527, Ishikawa et al. Phys. Rev. D 96, 094019 (2017), Chen et al

Nucl.Phys. B915 (2017) and A. V. Radyushkin Phys.Lett. B781 (2018) 433-442 the one |00p renormalizability of
M*(z,p,a) has been discussed

m by analyzing the pertinent diagrams one can see that there is a linear
divergence from the link self-energy contribution and a logarithmic
divergence associated to the anomalous dimension 2.4 due to two

end-points of the link.

z t1z toz 0 z t, [) z t, ()

>

s | .
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Renormalization

m M has been shown to renormalize multiplicatively as
Mp(v, 2%, u) = Zj_le_lef‘sm‘Z‘./\/lB(l/, z%,a), where 6m = Cp§sZ, is an
effective mass counterterm removing power divergences in the Wilson line
and Z;17Z]?1 are renormalization constants (RCs) associated with the

endpoints of the Wilson line independent of z, p.
m The entire renormalization is independent of the external momentum

m Forming the ratio, the RCs cancel and thus the reduced loffe time
distribution has a great potential to reduce systematic effects related to
renormalization. The UV divergences generated by the link-related and

quark-self-energy diagrams cancel in the ratio.

Savvas Zafeiropoulos Lattice studies of pseudo-PDFs 11/35



Numerical implementation

m Renormalization of the ME?

m For z3 = 0 M(z3p, 23) — the local iso-vector current, should be =1 (but

...) lattice artifacts...

1

m IntroduceanRC 7, = ————
P J(23p,z§)|23:0
m 7, has to be independent from p. But lattice artifacts or potential fitting

systematics ...
m renormalize the ME for each momentum with its own Z,, — maximal
statistical correlations to reduce statistical errors, and cancellation of lattice

artifacts in the ratio
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Numerical implementation

m in practise use the double ratio

2.
Mcﬁ'(23p7 Z%; t) Meﬂ(23p7 233 t) }p:(),z:szo

Meff(23pa Z?Qﬁ t)‘p:() ’

o 1.
M(v, 23) = thjglo Mgt (23p, 23; 1)

z3 =0

m infinite ¢ limit is obtained with a fit to a constant for a suitable choice of a

fitting range.
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Matching to M S

m In 1801.02427 it was shown by Radyushkin that at 1-loop evolution and

matching to M S can be done simultaneously.

m This establishes a direct relation between the loffe time distribution
function (ITDF) and pseudo-ITDF.

m Scales are needed as such that we are in a regime dominated by

perturbative effects

1
Z(v, MQ) =M(v, Zg) + % Cr /0 dw M(wv, Z%)

eve+1/2
-

X {B(w) In [(1 — w)zg

+[(w+1)ln(1—w)—(1—w)]+}
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Comparison to global fits after converting to the

scheme

loffe Time Distribution Isovector quark parton distribution function

CJ15 nlo (4 Gev?)

NNPDF21 nnlo (4 Gev?)
MSTW nnlo (4 Gev?)

MS bar matched fit (1 Gev?)
—— MS bar matched fit (4 Gev?)
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Bayesian Reconstruction

P[M|q, I]Plg|1]
Plgm, I] =
lal3, 1] P[m|I]
m The likelihood probability P[M1|q, I] denotes how probable it is to find the

data 901 if ¢ were the correct PDF.

m Finding the most probable ¢ by maximizing the likelihood is nothing but a
x? fit to the 9 data, which as we saw from the direct inversion is by itself
ill-defined.

m The prior probability P[g|I], which quantifies, how compatible our test
function ¢ is with respect to any prior information we have (e.g. appearance

of non-analytic behavior of ¢(x) at the boundaries of the x interval).

m P[M|I], the so called evidence is a ¢ independent normalization.
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Bayesian Reconstruction

m For sampled data, due to the central limit theorem, the likelihood
probability may be written as the quadratic distance functional
P[M|g, I] = exp[—L] with L = 37, (M, — M])Cp (9, — MY).

m M} are the loffe-time data arising from inserting the test function ¢ into
the cosine Fourier trafo and C}); denotes the covariance matrix of the NV,

measurements of simulation data 9%

m We then specify an appropriate prior probability Plg|I] = exp[a.S[I]].

m Prior information enters in two ways here. On the one hand we deploy a
particular functional form of the regularization functional

Sprlg,m ZALn(l——+l g( ))

’I’L

which may be obtained by requiring positive definiteness of the resulting ¢,

smoothness of gq.
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Bayesian Reconstruction

m The functional S depends on the function m, the default model.
m By construction constitutes its unique extremum.
m In the Bayesian logic m is the correct result for ¢ in the absence of any data.

m We select m by a best fit of the loffe-PDF data and we will vary it to get a

handle on systematics.
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Bayesian Reconstruction

m What happens in the case of non-guaranteed positive definiteness?
m We need to change the regulator!

m Often the quadratic regulator is used

2
SQDR q, m Z ATIL (qn - mn)
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Bayesian Reconstruction

m What happens in the case of non-guaranteed positive definiteness?
m We need to change the regulator!

m Often the quadratic regulator is used
2
SQDR q, m Z A/En (qn - mn)

m |t is a comparatively strong regulator and usually imprints the form of the

default model significantly onto the end result.
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Bayesian Reconstruction

m What happens in the case of non-guaranteed positive definiteness?
m We need to change the regulator!

m Often the quadratic regulator is used
2
SQDR q, m Z Amn (qn - mn)

m |t is a comparatively strong regulator and usually imprints the form of the
default model significantly onto the end result.
m Trying to keep the influence of the default model to a minimum, we extend

the BR prior to non-positive functions.

SBRrglg;m ZAT”< - him” 4 log(w 3 1))

n

keeping the advantageous properties of the original BR prior at the price of
having to introduce another default model related function h.
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Bayesian Reconstruction

m once L, S and m have been provided, the most probable PDF ¢, given
simulation data and prior information is obtained by numerically finding the

extremum of the posterior

dP[q|9M, I]

5q =0.

gd=(Bayes

m It has been proven that if the regulator is strictly concave, as is the case for
all the regulators discussed above, there only exists a single unique
extremum in the space of functions g on a discrete v interval.

m With positive definiteness is imposed on the end result, the space of
admissible solutions is significantly reduced. Regulators admitting also ¢
functions with negative contributions have to distinguish between a
multitude of oscillatory functions, which if integrated over, resemble a
monotonous function to high precision. We will observe the emergence of

ringing artefacts for the quadratic and generalized BR prior.
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Bayesian Reconstruction

m The functional S depends on the function m, the default model.
m By construction constitutes its unique extremum.
m In the Bayesian logic m is the correct result for ¢ in the absence of any data.

m We select m by a best fit of the loffe-PDF data and we will vary it to get a
handle on systematics.

m In the definition of P[g|I] we introduced a further parameter ¢, a so called
hyperparameter

m Weighs the influence of simulation data and prior information. It has to be
taken care of self-consistently.

m In the Maximum Entropy Method « is selected, such that the evidence has
an extremum. In the BR method we deploy here, we marginalize the
parameter « apriori, i.e. we integrate the posterior w.r.t the

hyperparameter, assuming complete ignorance of its values Pla] = 1.
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Advanced PDF Reconstructions

m A versatile approach is Bayesian inference v. sumier and A Rothkopf Phys RevLett. 111 (2013)

m It acknowledges the fact that the inverse problem is ill-defined and a unique
answer may only provided, once further information about the system has

been made available.

m Formulated in terms of probabilities, one finds in the form of Bayes theorem

that
P[M|q, I P[q|1]

Plgn, I =
It states that the so called posterior probability P[g|90t, I] for a test function
q to be the correct xz-space PDF, given our simulated loffe-time PDF 91 and

additional prior information may be expressed in terms of three quantities.
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Bayesian Reconstruction

P[M|q, I]Plg|1]
Plgm, I] =
lal3, 1] P[m|I]
m The likelihood probability P[M1|q, I] denotes how probable it is to find the

data 901 if ¢ were the correct PDF.

m Finding the most probable ¢ by maximizing the likelihood is nothing but a
x? fit to the 9 data, which as we saw from the direct inversion is by itself
ill-defined.

m The prior probability P[g|I], which quantifies, how compatible our test
function ¢ is with respect to any prior information we have (e.g. appearance

of non-analytic behavior of ¢(x) at the boundaries of the x interval).

m P[M|I], the so called evidence is a ¢ independent normalization.
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Bayesian Reconstruction

m For sampled data, due to the central limit theorem, the likelihood
probability may be written as the quadratic distance functional
P[M|g, I] = exp[—L] with L = 37, (M, — M])Cp (9, — MY).

m M} are the loffe-time data arising from inserting the test function ¢ into
the cosine Fourier trafo and C}); denotes the covariance matrix of the NV,

measurements of simulation data 9%

m We then specify an appropriate prior probability Plg|I] = exp[a.S[I]].

m Prior information enters in two ways here. On the one hand we deploy a
particular functional form of the regularization functional

Sprlg,m ZALn(l——+l g( ))

’I’L

which may be obtained by requiring positive definiteness of the resulting ¢,

smoothness of gq.
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Bayesian Reconstruction

m The functional S depends on the function m, the default model.
m By construction constitutes its unique extremum.
m In the Bayesian logic m is the correct result for ¢ in the absence of any data.

m We select m by a best fit of the loffe-PDF data and we will vary it to get a

handle on systematics.
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Bayesian Reconstruction

m What happens in the case of non-guaranteed positive definiteness?
m We need to change the regulator!

m Often the quadratic regulator is used
2
SQDR q, m Z Amn (qn - mn)

m |t is a comparatively strong regulator and usually imprints the form of the
default model significantly onto the end result.
m Trying to keep the influence of the default model to a minimum, we extend

the BR prior to non-positive functions.

SBRrglg;m ZAT”< - him” 4 log(w 3 1))

n

keeping the advantageous properties of the original BR prior at the price of
having to introduce another default model related function h.
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Bayesian Reconstruction

m once L, S and m have been provided, the most probable PDF ¢, given
simulation data and prior information is obtained by numerically finding the

extremum of the posterior

dP[q|9M, I]

5q =0.

gd=(Bayes

m It has been proven that if the regulator is strictly concave, as is the case for
all the regulators discussed above, there only exists a single unique
extremum in the space of functions g on a discrete v interval.

m With positive definiteness is imposed on the end result, the space of
admissible solutions is significantly reduced. Regulators admitting also ¢
functions with negative contributions have to distinguish between a
multitude of oscillatory functions, which if integrated over, resemble a
monotonous function to high precision. We will observe the emergence of

ringing artefacts for the quadratic and generalized BR prior.
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Neural Network Reconstruction

m The ensemble average of data is obtained in two steps
» Starting from random [w, b], minimize x? to find [w, b].
» Repeat 10 times to find 10 different Neural Nets (replicas).

m For each Neural Net, the minimizer is re-run for each jackknife sample to
obtain a jackknife estimate ¢(z) for each replica.

m The central value of ¢(z) is estimated as the average over jackknife samples
and replicas.

m The error is estimated by combining the fluctuations over the jackknife
sample and replicas.

w**b
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Lattice QCD requirements

m Largest momentum on the lattice aPq. = 7/2 o< O(1)
ma=0.1fm = Py, = 10A where A = 300 MeV
m a=0.05fm — Ppg. = 20A

Large momentum is required to suppress high twist effects (quasi-PDFs) and
to provide a wide coverage of the loffe time v

Pz = 3 GeV easily achievable with moderate values of the lattice spacing
but still demanding due to statistical noise

Piae = 6 GeV exponentially harder requiring very fine values of the lattice

spacing
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Signal to Noise

8 (O (1)) ~ e 8
/——;r\

—

RN (0w ~ e s

Statistical accuracy drops exponentially with increasing momentum P

StN(O) = \;O:(O) o< e_[EN(P)—i’)/Qm,,]t

G. Parisi (1984) P. Lepage (1989)
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Determination of PDFs from Experiment
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Global fits to experimental data Parton distributions and lattice QCD calculations: a community white paper arXiv

1711.07916
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Determination of PDFs from Experiment

- NNPDFpol1.1 (NLO) ] 7 ]
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Global fits to experimental data Parton distributions and lattice QCD calculations: a community white paper arXiv

1711.07916
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Backus-Gilbert Reconstruction

m The Backus-Gilbert (BG) method instead of imposing a smoothing
condition on the resulting PDF ¢(x) it imposes a minimization condition on
the variance of the resulting function. . Backus and F. Gilbert. Geophysical Journal of the Royal

Astronomical Society, 16:169205, (1968)

m Let us define a rescaled kernel and rescaled PDF h(x)

¢ ()
p(x)

K (2) = cos(vja)p(x) and, h(x) =

m where p(x) corresponds to an appropriately chosen function that makes the

problem easier to solve.
m We wish to incorporate into p(x) most of the non-trivial structure of ¢(x)

apriorily, such that h(x) is a slowly varying function of 2 and contains only
the deviation of g(x) from p(x).
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Backus-Gilbert Reconstruction

m Starting from the preconditioned expression with a rescaled PDF h(x) that

is only a slowly varying function of x our inverse problem becomes

1

d; = Mr(v)) :/0 deK;(z)h(z) .

m BG introduces a function A(z — ) = 3, ¢;(Z)Kj(z), where g;(Z) are
unknown functions to be determined.

m |t then estimates the unknown function as a linear combination of the data
i Z% djvor QU Z%

m If A(z — %) were to be a d—function then h(z) = h(z). If A(z — &)
approximates a d-function with a width o, then the smaller o is the better

the approximation of h(z) to h(z).
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Backus-Gilbert Reconstruction

m In other words if EU(T) is the approximation resulting from A(z) with a
width o then lim,_,0 ho () = h(z).

m With this in mind BG minimizes the width o given by

o= /01 do(z — 7)2A(x — 5)?

m Furthermore, if A(z) approximates a d-function then one has to impose the
constraint fol dx A(x — z) = 1. Using a Lagrange multiplier A one can

minimize the width and impose the constraint by minimizing
1

1
Xl = / dx(o—5)? 3 () K () K ()i (7)) / dx' 3 K (2)g5 (7).
| 2

0 j

m But let's see all this in practise ...
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