# Hadronic vacuum polarization contribution to the muon magnetic moment from lattice QCD

#### Laurent Lellouch

CPT Marseille CNRS & Aix-Marseille U.

(BMWc, Phys.Rev. D96 (2017) 074507 & Phys. Rev. Lett. 121 (2018) 022002 [Editors' Suggestion])



## Interaction with an external EM field: SM & BSM

Assuming Poincaré invariance and current conservation ( $q^{\mu}J_{\mu} = 0$  with  $q \equiv p' - p$ ):

$$\begin{split} \langle \ell(p') | J_{\mu}(\mathbf{0}) | \ell(p) \rangle &= \bar{u}(p') \left[ \gamma_{\mu} F_{1}(q^{2}) + \frac{i}{2m_{\ell}} \sigma_{\mu\nu} q^{\nu} F_{2}(q^{2}) - \gamma_{5} \sigma_{\mu\nu} q^{\nu} F_{3}(q^{2}) \right. \\ &+ \gamma_{5}(q^{2} \gamma_{\mu} - 2m_{\ell} q_{\mu}) F_{4}(q^{2}) \right] u(p) \end{split}$$

$$F_{1}(q^{2}) \rightarrow \text{Dirac form factor: } F_{1}(0) = 1$$

$$F_{2}(q^{2}) \rightarrow \text{Pauli form factor, magnetic dipole moment: } F_{2}(0) = a_{\ell} = \frac{g_{\ell} - 2}{2}$$

$$F_{3}(q^{2}) \rightarrow P, T, \text{ electric dipole moment: } F_{3}(0) = d_{\ell}/e_{\ell}$$

$$F_{4}(q^{2}) \rightarrow P, \text{ anapole moment: } \vec{\sigma} \cdot (\vec{\nabla} \times \vec{B})$$

•  $F_2(q^2) \& F_{3,4}(q^2)$  come from loops but UV finite once theory's couplings are renormalized (in a renormalizable theory)

- all dimensionless
  - $\Rightarrow$  corrections including only  $\ell$  and  $\gamma$  are mass independent, i.e. universal
  - $\rightarrow$  contributions from particles w/  $M \gg m_{\ell}$  are  $\propto (m_{\ell}/M)^{2\rho} \times \ln^q (m_{\ell}^2/M^2)$
  - $\rightarrow$  contributions from particles w/  $m \ll m_\ell$  are e.g.  $\propto \ln^2(m_\ell^2/m^2)$

## Why are $a_{\ell}$ special?



- Loop induced ⇒ sensitive to new dofs
- CP and flavor conserving, chirality flipping ⇒ complementary to other measurements: EDMs, b → sℓ<sup>+</sup>ℓ<sup>-</sup>, μ → eγ, B → D<sup>(\*)</sup>ℓν<sub>ℓ</sub>, EW precision observables, LHC direct searches, ...
- In SM, only source of chirality flips is  $y_{\ell} \bar{\ell}_L H \ell_R$

$$m{m}_{\ell} = m{y}_{\ell} \langle m{H} 
angle, \qquad m{a}_{\ell}^{\mathsf{weak}} \propto rac{lpha}{4\pi} \left(rac{m{m}_{\ell}}{m{M}_{W}}
ight)^2$$

BSM can be very different

$$a_\ell^{\mathsf{N}\Phi} \propto \left(rac{\Delta^{\mathsf{N}\Phi} m_\ell}{m_\ell}
ight) \left(rac{m_\ell}{M_{\mathsf{N}\Phi}}
ight)^2$$

## Why is $a_{\mu}$ special?

 $m_e: m_\mu: m_\tau = 0.0005: 0.106: 1.777 \,\mathrm{GeV}$ 

$$au_{e}: au_{\mu}: au_{ au} = "\infty": 2.{\cdot}10^{-6}: 3.{\cdot}10^{-15}\,\mathrm{s}$$

•  $a_{\mu}$  is  $(m_{\mu}/m_e)^2 \sim 4. \times 10^4$  times more sensitive to new  $\Phi$  than  $a_e$ 

a<sub>τ</sub> is even more sensitive to new Φ, but is too shortly lived



## $a_{\mu}$ experimental summary



Two new experiments plan to reduce error on  $a_{\mu}$  to  $\sim 0.14$  ppm

• New g-2 (E989) @ Fermilab: has started taking data fall 2017

g − 2/EDM (E34) @ J-PARC: should start taking data ≥ 2021

## Standard model calculation of $a_{\mu}$

$$\begin{aligned} a_{\mu}^{\text{SM}} &= a_{\mu}^{\text{QED}} + a_{\mu}^{\text{had}} + a_{\mu}^{\text{weak}} \\ &= O\left(\frac{\alpha}{\pi}\right) + O\left(\left(\frac{\alpha}{\pi}\right)^{2} \left(\frac{m_{\mu}}{M_{\rho}}\right)^{2}\right) + O\left(\left(\frac{g_{2}}{4\pi}\right)^{2} \left(\frac{m_{\mu}}{M_{W}}\right)^{2}\right) \\ &= O\left(10^{-3}\right) + O\left(10^{-7}\right) + O\left(10^{-9}\right) \end{aligned}$$

• **QED:** computed to  $O(\alpha^5)$  (Aoyama, Kinoshita, Nio '96-'15)

- 12,672 diagrams at  $O(\alpha^5)$
- $a^{\text{QED}}_{\mu}(a_e) = 0.00116584718841(7)_m(17)_{\alpha^4}(6)_{\alpha^5}(28)_{\alpha(a_e)}$  (Aoyama et al '18)
- Weak: computed to 2 loops (Gnendiger et al '15 and refs therein)
  - $a_{\mu}^{\text{weak}} = 0.00000001536(10)$
- Hadronic: non-perturbative QCD because  $q^2 = 0$  and  $m_{\mu} \ll 1$  GeV
  - $a_{\mu}^{\text{had}} \stackrel{?}{=} a_{\mu}^{\text{exp}} a_{\mu}^{\text{QED}} a_{\mu}^{\text{weak}} = 0.00000007219(63)$
  - clearly right order of magnitude

## Hadronic contributions to $a_{\mu}$ : diagrams



HVP from dispersion relations (DR) and  $e^+e^- \rightarrow$  hadrons & HLbyL from DR, data and models

## SM prediction vs experiment

| SM contribution   | $a_{\mu}^{\text{contrib.}} \times 10^{11}$ | Ref.                  |
|-------------------|--------------------------------------------|-----------------------|
| QED [5 loops]     | 116584718.841 ± 0.034                      | [Aoyama et al '18]    |
| HVP LO            | $6933\pm25$                                | [KNT '18]             |
|                   | $6931 \pm 34$                              | [DHMZ '17]            |
|                   | $6881 \pm 41$                              | [Jegerlehner '17]     |
| HVP NLO           | $-98.7\pm0.9$                              | [Kurz et al '14]      |
|                   | [Kurz et al '14, Jegerlehner '16]          |                       |
| HVP NNLO          | $12.4\pm0.1$                               | [Kurz et al '14]      |
|                   |                                            | [Jegerlehner '16]     |
| HLbyL             | $105\pm26$                                 | [Prades et al '09]    |
|                   | $54\pm14\pm??$                             | [RBC '16]             |
| Weak (2 loops)    | $153.6\pm1.0$                              | [Gnendiger et al '15] |
| SM Tot [0.31 ppm] | $116591824 \pm 36$                         | [w/ KNT '18]          |
| [0.37 ppm]        | $116591822 \pm 43$                         | [w/ DHMZ '17]         |
| [0.42 ppm]        | $116591772 \pm 49$                         | [Jegerlehner '17]     |
| Exp [0.54 ppm]    | $116592091 \pm 63$                         | [Bennett et al '06]   |
| Exp – SM          | $267\pm72$                                 | [KNT '18]             |
|                   | $269\pm76$                                 | [DHMZ '17]            |
|                   | $319\pm80$                                 | [Jegerlehner '17]     |

## HVP from LQCD: introduction

Consider in Euclidean spacetime (Blum '02)

$$\mathsf{w}/J_{\mu} = \frac{2}{3}\bar{u}\gamma_{\mu}u - \frac{1}{3}\bar{d}\gamma_{\mu}d - \frac{1}{3}\bar{s}\gamma_{\mu}s + \frac{2}{3}\bar{c}\gamma_{\mu}c + \cdots$$

Then (Lautrup et al '69, Blum '02)

$$a_{\ell}^{\text{LO-HVP}} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^\infty \frac{dQ^2}{m_{\ell}^2} w(Q^2/m_{\ell}^2)\hat{\Pi}(Q^2)$$
$$w/\hat{\Pi}(Q^2) \equiv \left[\Pi(Q^2) - \Pi(0)\right]$$

Integrand peaked for  $Q \sim (m_{\ell}/2)$ 



(HVP from Jegerlehner, "alphaQEDc17" (2017))

## Low- $Q^2$ challenges in finite volume (FV)

- A. Must subtract  $\Pi_{\mu\nu}(Q = 0) \neq 0$  in FV that contaminates  $\Pi(Q^2) \sim \Pi_{\mu\nu}(Q)/Q^2$  for  $Q^2 \to 0$  w/ very large FV effects
- B. On-shell renormalization requires  $\Pi(0)$  which is problematic (see above)
- C. Need  $\hat{\Pi}(Q^2)$  interpolation due to  $Q_{\min} = 2\pi/T \sim 135 \,\text{MeV} > \frac{m_{\mu}}{2} \sim 50 \,\text{MeV}$  for  $T \sim 9 \,\text{fm}$

↓

• Compute on 
$$T \times L^{c}$$
 lattice  
 $C_{L}(t) = \frac{a^{3}}{3} \sum_{i=1}^{3} \sum_{\vec{x}} \langle J_{i}(x)J_{i}(0) \rangle$   
• Decompose  $(C_{L}^{l=1} = \frac{9}{10}C_{L}^{ud})$   
 $C_{L}(t) = C_{L}^{ud}(t) + C_{L}^{s}(t) + C_{L}^{c}(t) + C_{L}^{disc}(t)$   
 $= C_{L}^{l=1}(t) + C_{L}^{l=0}(t)$ 

Define (Bernecker et al '11, BMWc '13, Feng et al '13, Lehner '14, ...) (ad A, B, C)

 $\hat{\Pi}_{L}^{f}(Q^{2}) \equiv \Pi_{L}^{f}(Q^{2}) - \Pi_{L}^{f}(0) = \frac{1}{3} \sum_{i=1}^{3} \frac{\Pi_{ii,L}^{f}(0) - \Pi_{ii,L}^{f}(Q)}{Q^{2}} - \Pi_{L}^{f}(0) = 2a \sum_{t=0}^{T/2} \operatorname{Re}\left[\frac{e^{iOt} - 1}{Q^{2}} + \frac{t^{2}}{2}\right] \operatorname{Re}C_{L}^{f}(t)$ Laurent Lellouch
BPP '19, Clermont, 25 January 2019

## Our lattice definition of $a_{\ell,f}^{\text{LO-HVP}}$

Combining everything, get  $a_{\ell,f}^{\text{LO-HVP}}$  from  $C_{L}^{f}(t)$ :

$$a_{\ell,f}^{\text{LO-HVP}}(Q^2 \le Q_{\max}^2) = \lim_{a \to 0, \ L \to \infty, \ T \to \infty} \left(\frac{\alpha}{\pi}\right)^2 \left(\frac{a}{m_{\ell}^2}\right) \sum_{t=0}^{T/2} W(tm_{\ell}, Q_{\max}^2/m_{\ell}^2) \operatorname{Re}C_L^t(t)$$

where

$$W(\tau, x_{\max}) = \int_0^{x_{\max}} dx \, w(x) \left(\tau^2 - \frac{4}{x} \sin^2 \frac{\tau \sqrt{x}}{2}\right)$$



 $(144 \times 96^3, a \sim 0.064 \, {\rm fm}, M_\pi \, \sim \, 135 \, {
m MeV})$ 

## Simulation challenges

- D.  $\pi\pi$  contribution very important
- $\rightarrow$  have physically light  $\pi$

E. Two types of contributions





where qd contributions are  $SU(3)_f$  and Zweig suppressed but very challenging

F.  $\langle J_{\mu}^{ud}(x) J_{\nu}^{ud}(0) \rangle_{qc}$  & disc. have very poor signal at large  $\sqrt{x^2}$  + need high-precision results

 $\rightarrow$  very high statistics + many algorithmic improvements + rigorous bounds  $\rightarrow$  9M / 39M conn./disc. measurements

- G. Must control  $\langle J_{\mu}(x)J_{\nu}(0)\rangle$  at  $\sqrt{x^2} \gtrsim 2/m_{\mu} \rightarrow L = 6.1 \div 6.6$  fm,  $T = 8.6 \div 11.3$  fm
- H. Need controlled continuum limit  $\rightarrow$  have 6 a's: 0.134  $\rightarrow$  0.064 fm

## More challenges

I. Need  $\hat{\Pi}(Q^2)$  for  $Q^2 \in [0, +\infty[$ , but  $\frac{\pi}{a} \sim 9.7 \text{ GeV}$  for  $a \sim 0.064 \text{ fm}$  $\rightarrow$  match onto perturbation theory

 $a^{\text{LO-HVP}}_{\ell,f} = a^{\text{LO-HVP}}_{\ell,f}(Q \le Q_{\text{max}}) + \gamma_{\ell}(Q_{\text{max}}) \hat{\Pi}^{f}(Q^{2}_{\text{max}}) + \Delta^{\text{pert}}a^{\text{LO-HVP}}_{\ell,f}(Q > Q_{\text{max}})$ 

- J. Include c quark for higher precision and good matching onto perturbation theory  $\rightarrow$  done
- K. Even in our large volumes w/  $L \gtrsim 6.1$  fm &  $T \ge 8.7$  fm, finite-volume (FV) effects can be significant
  - $\rightarrow$  correct using 1-loop SU(2)  $\chi$ PT (Aubin et al '16)
- L. Our  $N_f = 2 + 1 + 1$  calculation has  $m_u = m_d$  and  $\alpha = 0$

 $\Rightarrow$  missing effects compared to HVP from dispersion relations that are relevant at %-level precision

-> USE phenomenology (F.Jegerlehner (& M. Benayoun), private communication)

## Systematic errors and results for $a_{\mu}^{\text{LO-HVP}}$

- Stat. error: jackknife
- $a \rightarrow 0$ : from 4 (3) cuts on a for conn. (disc.)
- bounds: from  $t_c = 3.000(2.600) \pm 0.134 \text{ fm vs}$  $t_c = 2.866(2.466) \pm 0.134 \text{ fm for conn. (disc.)}$
- PT match: from  $Q_{\text{max}}^2 = 2 \text{ GeV}^2 \text{ vs } Q_{\text{max}}^2 = 5 \text{ GeV}^2$
- $\delta a \simeq 0.4\% \Rightarrow \delta_a a_\mu^{\text{LO-HVP}} \simeq 0.8\%$
- FV:  $a_{\mu,l=1}^{\text{LO-HVP}}(\infty) - a_{\mu,l=1}^{\text{LO-HVP}}(L=6 \text{ fm}) = (13.5 \pm 13.5) \times 10^{-10}$ from  $\chi$ PT
- IB:  $\Delta_{IB} a_{\mu}^{\text{LO-HVP}} = (7.8 \pm 5.1) \times 10^{-10}$  from pheno.

| Contrib.     | $a_{\mu}^{	ext{LO-HVP}}	imes 10^{10}$ |
|--------------|---------------------------------------|
| / = 1        | 583(7)(7)(0)(0)(5)(14)                |
| <i>l</i> = 0 | 121(3)(4)(0)(0)(1)                    |
| Total        | 711(8)(8)(0)(0)(6)(13)(5)             |
|              |                                       |

Error on total:

- Stat. = 1.1%
- LQCD syst. = 1.2%
- FV = 2.3%
- IB = 0.8%
- Total = 2.7%

Compare w/ upper bound (Bell et al '69) using  $\Pi_1$  from BMWc, PRD96 = 792(24)

Comparison



- "No New Physics" scenario: =  $(720 \pm 7) \times 10^{-10}$
- BMWc '17 consistent w/ "No new physics" scenario & pheno.
- Total uncertainty of 2.7% is ~ 6× pheno. error
- BMWc '17 is larger than other  $N_f = 2 + 1 + 1$  results
  - ightarrow difference w/ HPQCD '16 is  $\sim$  1.9 $\sigma$

#### What next?

- Need to reduce our error by 10!
- $\rightarrow$  Increase statistics by  $\times$ 50 $\div$ 100 (need new methods)
- → Understand and control FV effects much better
- $\rightarrow$  Compute QED and  $m_d \neq m_u$  corrections (see RBC/UKQCD '17-'18, ETM '17)
- $\rightarrow$  Need high precision scale setting
- ightarrow Detailed comparison to phenomenology to understand where we agree and why if we don't
- → Combine LQCD and phenomenology to improve overall uncertainty (RBC/UKQCD '18), only if the two agree statistically with comparable errors

