The Bearable Compositeness of Leptons

Michele Frigerio Laboratoire Charles Coulomb, CNRS & Université de Montpellier

> arXiv : 1807.04279 , JHEP 10 (2018) 017 , in collaboration with **Marco Nardecchia** (SISSA, Trieste), **Javi Serra** (TUM, Munich), **Luca Vecchi** (EPFL, Lausanne)

Rencontre de Physique des Particules 2019 @ Laboratoire de Physique de Clermont

Outline

 \rightarrow Fermion partial compositeness (PC): a theoretical framework to address the flavour problem

 \rightarrow General implications for neutrino mass and mixing

 \rightarrow The threat of charged-lepton flavour and CP violation: can one live with a compositeness scale close to TeV ?

Partial compositeness as a theory for flavour

D.B.Kaplan '91

- Classical flavour questions
 - Y Why SM fermion masses and mixing are hierarchical, except for neutrinos?
 - Y New physics close to TeV is motivated by the hierarchy problem: why flavour and CP violations are so small?
- Partial Compositeness (PC) answers
 - If the SM fermions mix with a strongly-coupled sector, the dynamics may induce hierarchy from anarchy
 - In turn flavour/CP violating effects can be suppressed by this hierarchy (if the new dynamics is close to the TeV, the Higgs may be composite)
- <u>Challenges in the lepton sector</u>
 - Can PC accommodate (predict) neutrino parameters?
 - Can PC close to TeV bear the great precision of low-energy experiments?

Partial Compositeness (I)

• SM fermions ψ weakly mix with composite operators O's at some UV scale Λ

$$\mathcal{L}_{PC} = \lambda_{ij} \psi_i \psi_j O_{ij}^H + \lambda_i \psi_i O_i^\Psi + \dots$$

• O's belong to an (approximately) scale-invariant sector, that eventually confines at scale $m^* << \Lambda$

If this sector is strongly-coupled, O's may have large anomalous dimensions: •

blem:

 $O^{H\dagger}O^{H} \sim 2 \Delta^{H} > 4$

Luty, Okui '04

Tonni, Vichi '08

Rattazzi, Rychkov,

$$\begin{split} \mu \frac{d}{d\mu} \lambda_{ij} \simeq (\Delta_{ij}^H - 1) \lambda_{ij} + \mathcal{O}(\lambda^3) \ , \quad \Delta_{ij}^H \ge 1 \ , \quad \Delta_{ij}^H \gtrsim 2 \\ & \begin{matrix} \text{Unitarity} \\ \text{Bounds} \end{matrix} \text{ Mack '77} \\ \mu \frac{d}{d\mu} \lambda_i \simeq (\Delta_i^\Psi - 5/2) \lambda_i + \mathcal{O}(\lambda^3) \ , \quad \Delta_i^\Psi \ge 3/2 \end{split} \quad \begin{array}{l} \text{To avoid hierarchy} \\ \mu \Delta_{ij} \gtrsim 2 \\ \Delta_{ij} \gtrsim 2 \\ \Delta_{ij} \approx 2 \\ \Delta_{ij} \approx$$

ł

Partial Compositeness (II)

$$\lambda_{ij}(m_*) \simeq \lambda_{ij}(\Lambda) \left(\frac{m_*}{\Lambda}\right)^{\Delta_{ij}^H - 1}$$

Bilinear mixing 'irrelevant':

 λ 's are power-suppressed in the IR (Δ^{H} - 1 > 1) [tension between large (top) Yukawa couplings and quark flavour-violation bounds]

$$\lambda_i(m_*) \simeq \lambda_i(\Lambda) \left(\frac{m_*}{\Lambda}\right)^{\Delta_i^{\Psi} - 5/2} \equiv g^* \epsilon_i$$

Linear mixing more 'relevant' (Δ^{Ψ} - 5/2 > -1). slightly different anomalous dimensions induce large hierarchies among λ 's in the IR

- Composite states have characteristic strong coupling, $1 < g^* < 4\pi$
- Partially composite states have degree of compositeness $0 < \epsilon_i < 1$
- SM Yukawa couplings are controlled by the product of left- and right-handed ϵ 's

Below compositeness scale:

$$\mathcal{L}_{m_*} = y_{ij}^e \overline{\ell_L}_i e_{Rj} H + h.c.$$

[up to order-one coefficients in each Yukawa coupling entry]

$$y_{ij}^e \simeq g^* \epsilon_i^\ell \epsilon_j^e$$

$$\theta_{ij}^\ell \sim \epsilon_i^\ell / \epsilon_j^\ell$$

Neutrino mass from compositeness

Below compositeness scale:

$$\mathcal{L}_{m_*} \supset \frac{m_{\nu}}{v^2} \ell \ell H H + h.c.$$

If lepton number $U(1)_{L}$ is broken by strong dynamics, then Naive Dimensional Analysis (NDA) gives:

Weinberg '79

$$m_{\nu} \simeq \frac{(g_* \epsilon^\ell v)^2}{m_*} \gtrsim \frac{m_{\tau}^2}{m_*}$$

Multi-TeV strong dynamics must preserve lepton number: U(1)_L can be broken only by weak, external couplings, with $\Delta L \neq 0$

\mathcal{L}_{PC}	spurion
$\lambda_{\ell} \ell \ O_{L=-1}$	λ_ℓ
$\tilde{\lambda} O_{L=\Delta L}$	$ ilde{\lambda}$
$\tilde{\lambda}_{\ell}\ell \ O_{L=\Delta L-1}$	$ ilde{\lambda}_\ell$
$\tilde{\lambda}_{\ell\ell}\ell\ell \ O_{L=\Delta L-2}$	$ ilde{\lambda}_{\ell\ell}$
• • •	•••

Vecchi et al. '12, '15

$$\tilde{\lambda}(m_*) \simeq \tilde{\lambda}(\Lambda_L) \left(\frac{m_*}{\Lambda_L}\right)^{\gamma_O}{}_L$$

can be easily very small in the IR!

 m_v requires spurions with a total $\Delta L = -2$

Assuming flavour anarchy in the UV (all λ 's of the same order), one can show that only 3 flavour structures for m_v can emerge from partial compositeness

3 neutrino flavour structures from PC

$$m^{\nu} \text{ quadratic in } \epsilon_{k}^{\ell} : \quad m_{ij}^{\nu} = \epsilon_{i}^{\ell} \epsilon_{j}^{\ell} \tilde{\epsilon} \; \frac{(g_{*}v)^{2}}{m_{*}} \propto \begin{pmatrix} (\epsilon_{1}^{\ell})^{2} & \epsilon_{1}^{\ell} \epsilon_{2}^{\ell} & \epsilon_{1}^{\ell} \epsilon_{3}^{\ell} \\ \dots & (\epsilon_{2}^{\ell})^{2} & \epsilon_{2}^{\ell} \epsilon_{3}^{\ell} \\ \dots & \dots & (\epsilon_{3}^{\ell})^{3} \end{pmatrix}$$
$$m_{\nu} \text{ linear in } \epsilon_{k}^{\ell} : \quad m_{ij}^{\nu} = \left(\epsilon_{i}^{\ell} \tilde{\epsilon}_{j} + \epsilon_{j}^{\ell} \tilde{\epsilon}_{i}\right) \; \frac{(g_{*}v)^{2}}{m_{*}} \propto \begin{pmatrix} \epsilon_{1}^{\ell} & \epsilon_{2}^{\ell} & \epsilon_{3}^{\ell} \\ \epsilon_{2}^{\ell} & \epsilon_{2}^{\ell} & \epsilon_{3}^{\ell} \\ \epsilon_{3}^{\ell} & \epsilon_{3}^{\ell} & \epsilon_{3,2}^{\ell} \end{pmatrix}$$

Large neutrino mixing implies that 2 (or even 3) lepton doublets have similar degree of PC

 $|\epsilon_1^\ell| \lesssim |\epsilon_2^\ell| \sim |\epsilon_3^\ell|$

 \rightarrow correlation with charged-lepton flavour/CP violation

$$m_{\nu}$$
 independent from ϵ_k^{ℓ} : $m_{ij}^{\nu} = \tilde{\epsilon}_{ij} \ \frac{(g_* v)^2}{m_*} \propto \mathcal{O} \begin{pmatrix} 1 & 1 & 1\\ 1 & 1 & 1\\ 1 & 1 & 1 \end{pmatrix}$

Large mixing is automatic, as all mass matrix entries scale from UV to IR with the same anomalous dimension.

→ NO correlation with charged-lepton flavour/CP violation

[for all 3 neutrino flavor structures, anarchic PC predicts large CP-violating phases]

Charged-lepton flavour and CP violation

Among dim-6 operators involving leptons, let us focus on the electromagnetic dipole:

$$\mathcal{L}_{D=6} \supset \frac{C_{ij}^{e\gamma}}{\Lambda^2} \overline{e_{Li}} \sigma^{\mu\nu} e_{Rj} F_{\mu\nu} \frac{v}{\sqrt{2}}$$

(severe bounds on many other lepton operators, especially from various μ -to-e transitions and e-EDM) These bounds translate into constraints on the PC parameters: m*, g*, and the ϵ 's

Dipole operator in PC framework

$$\mathcal{L}_{D=6} \supset \frac{C_{ij}^{e\gamma}}{\Lambda^2} \overline{e_{Li}} \sigma^{\mu\nu} e_{Rj} F_{\mu\nu} \frac{v}{\sqrt{2}}$$

As in the case of Yukawa couplings and neutrino masses, the Wilson coefficient can be estimated by Naive Dimensional Analysis (NDA):

Minimal PC under pressure

PC strongly relaxes the constraints, nonetheless flavour anarchy (c_{ij} of order one) is not compatible with the most natural compositeness scale (m_{*} a few TeV, g_{*} a few)

The ratio $m_*/g_* \sim f$ is the decay constant of the composite Goldstone Higgs v^2/f^2 measures the tuning needed for the EW scale Precision data require $v^2/f^2 < 0.1$ $\frac{v^2}{f^2} \sim \frac{(g_*v)^2}{m^2} \simeq 0$

$$\frac{v^2}{f^2} \sim \frac{(g_* v)^2}{m_*^2} \simeq 0.1 \left(\frac{g_*}{4\pi}\right)^2 \left(\frac{10 \text{ TeV}}{m_*}\right)^2$$

Two approaches to relax the bounds

[A] Strong dynamics is not flavour-anarchic. Besides $U(1)_{L}$, it also preserves flavour numbers $U(1)_{e} \ge U(1)_{u} \ge U(1)_{\tau}$ as well as CP. The PC explanation for $y_{e} \le y_{u} \le y_{\tau}$ is preserved. (note QCD has a large flavour symmetry) In this case c_{ii} are not generic, and flavour/CP violation resides only in the external couplings λ 's

Flavour-violation frontier (
$$\mu \rightarrow e \gamma$$
)

CP-violation frontier (electron EDM)

$$|c_{12,21}^{e\gamma}| \left(\frac{g_*}{4\pi}\right)^2 \left(\frac{10 \text{ TeV}}{m_*}\right)^2 < 0.03 \qquad \qquad |\text{Im}c_{11}^{e\gamma}| \left(\frac{g_*}{4\pi}\right)^2 \left(\frac{10 \text{ TeV}}{m_*}\right)^2 < 0.01$$

[B] Strong dynamics allows for multiple scales: $m_* \sim 10 \text{ TeV} \ll m_*^{\tau} \ll m_*^{\mu} \ll m_*^{e}$

Operators $O_{e,\mu,\tau}$ decouple at different scales, explaining Yukawa hierarchies (even for $\varepsilon_{e,\mu,\tau} \sim 1$). Even if c_{ii} are generic, flavour/CP violation in the ij channel are strongly suppressed by m^{i,j} The contributions to $\mu \rightarrow e \gamma$ and electron EDM are suppressed, relatively to scenario [A], $\frac{m_{\mu}m_{\tau}}{q_{\star}^2 v^2} \lesssim 10^{-6}$ by a factor effectively solving the flavour/CP problem

Conclusions

- Precision lepton observables are exploring the multi-TeV scale
- Partial compositeness explain fermion mass hierarchies, and thus mitigates the flavour problem
- Three specific neutrino flavour patterns emerge from the composite dynamics
- Flavor and CP constraints push the compositeness scale above the range preferred by naturalness
- A symmetry U(1)³ x CP greatly reduces the tension.
 Alternative solution is to allow for multiple flavour scales above m_{*}
- Comment on current anomalies (muon g-2, B semi-leptonic decays): they are flavor and CP conserving ! But, they require composite states below m_{*}, except for the b-to-s violation of lepton universality...