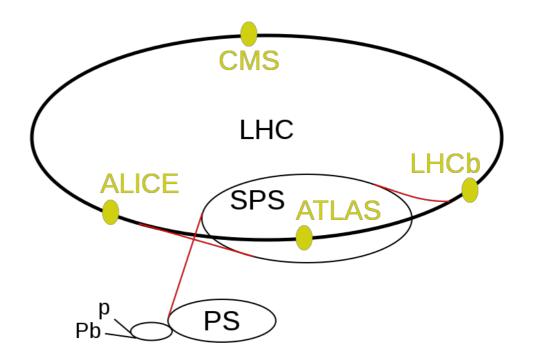
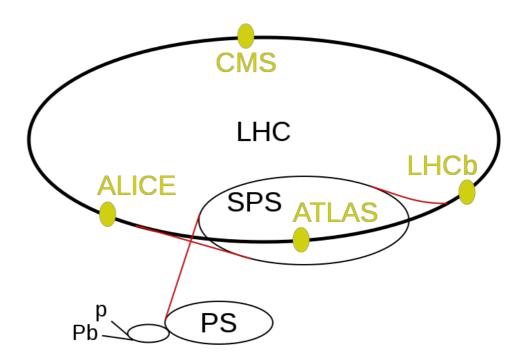
SEARCH FOR LONG-LIVED PARTICLES WITH HEAVY ION COLLISIONS AT THE LHC

Michele Lucente

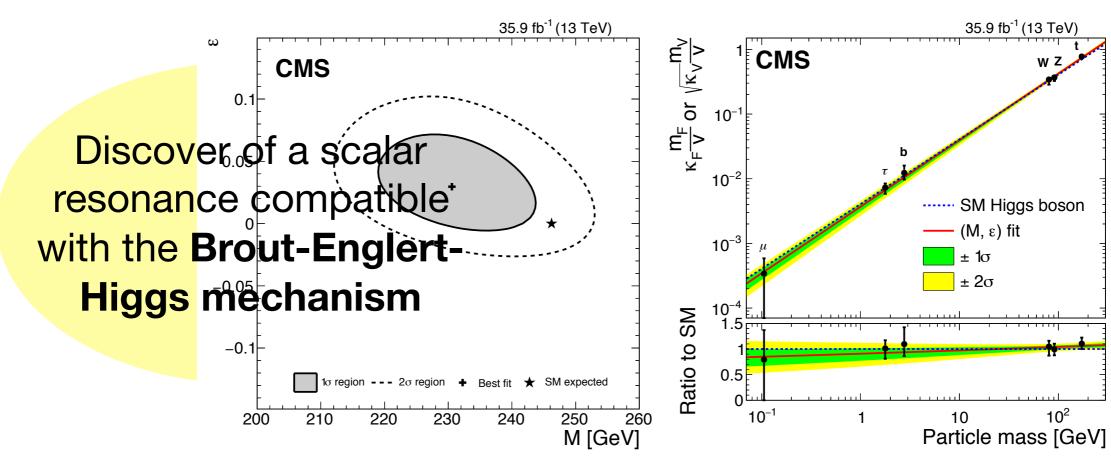
Rencontre de Physique des Particules 2019 24th January 2019, LPC Clermont

Based on arXiv:1810.09400 [hep-ph] in collaboration with Marco Drewes, Andrea Giammanco, Jan Hajer and Olivier Mattelaer




Main goals:

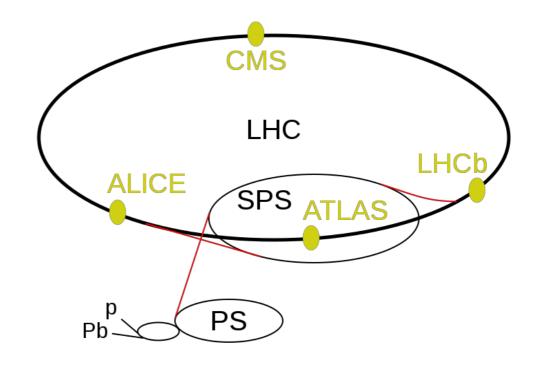
- Unveil the origin of EWSB
- Search for New Physics
- Study Quark-gluon plasma (QGP)



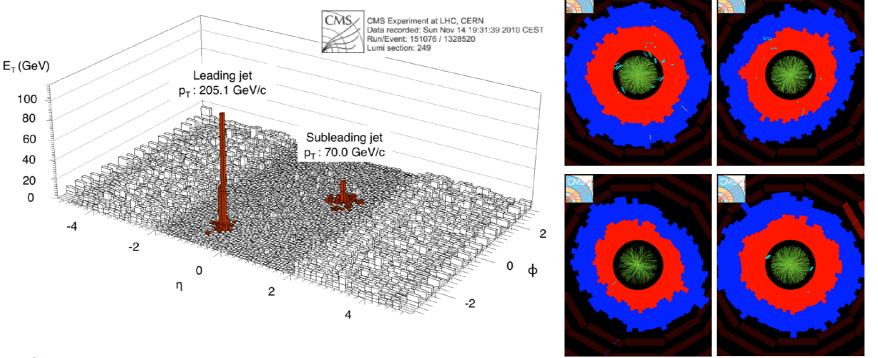
Main goals:

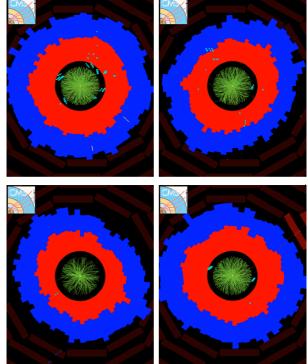
- Unveil the origin of EWSB
- Search for New Physics
- Study Quark-gluon plasma (QGP)

So far...



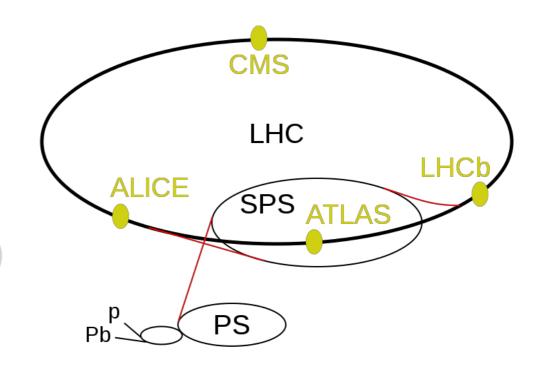
CMS Collaboration, arXiv:1809.10733 [hep-ex]


Main goals:


- Unveil the origin of EWSB
- Search for New Physics
- Study Quark-gluon plasma (QGP)

So far...

QGP dynamics observed in Heavy Ion collisions



W. Busza, K. Rajagopal and W. van der Schee, arXiv:1802.04801 [hep-ph]

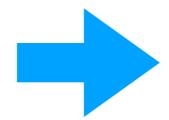
Main goals:

- Unveil the origin of EWSB
- Search for New Physics
- Study Quark-gluon plasma (QGP)

So far...

No New Physics observed!

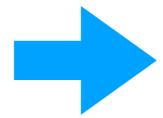
But we expect it to exist


The quest for new physics

Several observations call for new physics beyond the Standard Model: neutrino masses and mixing, dark matter, baryogenesis...

Why new physics has not been observed at the LHC?

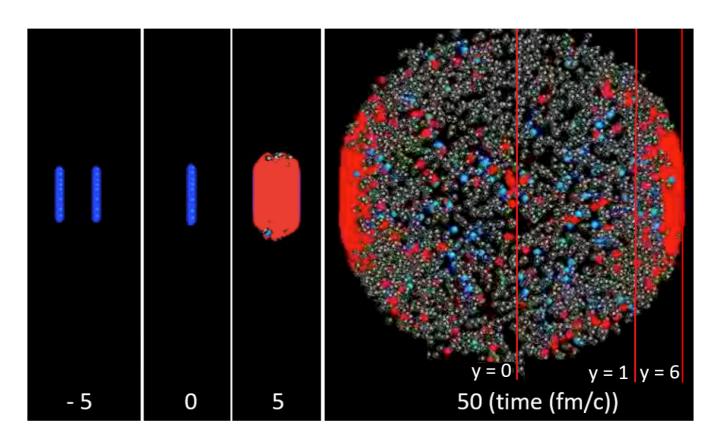
The reason could be a linear combination of:


The NP energy scale is too large

Need for more powerful colliders (energy frontier)

The NP is feebly coupled

e.g. low-scale seesaw, freeze-in DM, freeze-in leptogenesis...



Need for more collisions (intensity frontier)

Can we do more with existing machines?

Heavy ion collisions

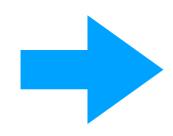
Each nucleus ${}_Z^AN$ contains A nucleons

In NN collisions, number of parton level interactions enhanced by a factor A²

$$^{08}_{82}$$
Pb

For instance with
$$^{208}_{82}{\rm Pb}$$
 \longrightarrow $\frac{\sigma_{\rm PbPb}}{\sigma_{\rm pp}} \propto A^2 \simeq 4.3 \times 10^4$

Features of Heavy Ions runs


Features of Heavy Ions runs

The charge to mass ratio is smaller for heavy ions

Smaller energy collision per nucleon

$$\sqrt{s_{\mathrm{PbPb}}} = 5.52 \; \mathrm{TeV}$$

$$\sqrt{s_{\rm pp}} = 14 \text{ TeV}$$

Scaling factor

$$\frac{\sigma_{pp} \left(14 \text{ TeV}\right)}{\sigma_{PbPb} \left(5.52 \text{ TeV}\right)}$$

- Typically larger for gluon-initiated processes than for quark-antiquark ones
- Grows with the particle masses in the final state

Lower instantaneous luminosity

LHC can only collect a sizeably lower luminosity with heavy ions due to machine limitations

Int. luminosity expected pp expected PbPb									
Run 2	100 fb ⁻¹	1 nb ⁻¹							
HL LHC	3000 fb ⁻¹	10 nb ⁻¹							

This is due to ultraperipheral electromagnetic interactions:

Bound-Free Pair-Production (BFPP): $\sigma_{\text{BFPP}} \propto Z'$

$$^{208}\text{Pb}^{82+} + ^{208}\text{Pb}^{82+} \longrightarrow ^{208}\text{Pb}^{82+} + ^{208}\text{Pb}^{81+} + e^{+}$$

Electromagnetic Dissociation (EMD): $\sigma_{\text{EMD}} \propto \frac{(A-Z)Z^3}{A^{2/3}}$

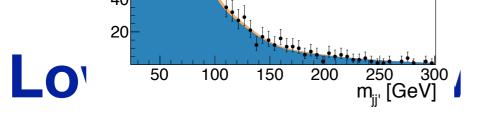
$$\sigma_{
m EMD} \propto rac{(A-Z) \, Z^3}{A^{2/3}}$$

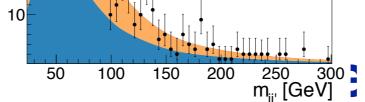
$$^{208}\text{Pb}^{82+} + ^{208}\text{Pb}^{82+} \longrightarrow ^{208}\text{Pb}^{82+} + ^{207}\text{Pb}^{82+} + \text{n}$$

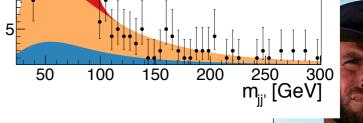
For PbPb with E_b=7ZTeV

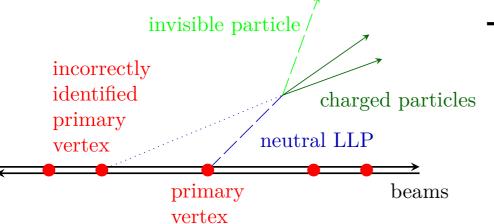
	BF	PP		Hadronic		
Symbole	$\sigma_{ m c,BFPP1}$	$\sigma_{ m c,BFPP2}$	$\sigma_{ m c,EMD1}$	$\sigma_{ m c,EMD2}$	$\sum \sigma_{ m c,EMD}$	$\sigma_{ m c,hadron}$
Cross-section [b]	281	0.006	96	29	226	8

M. Schaumann, CERN-THESIS-2015-195

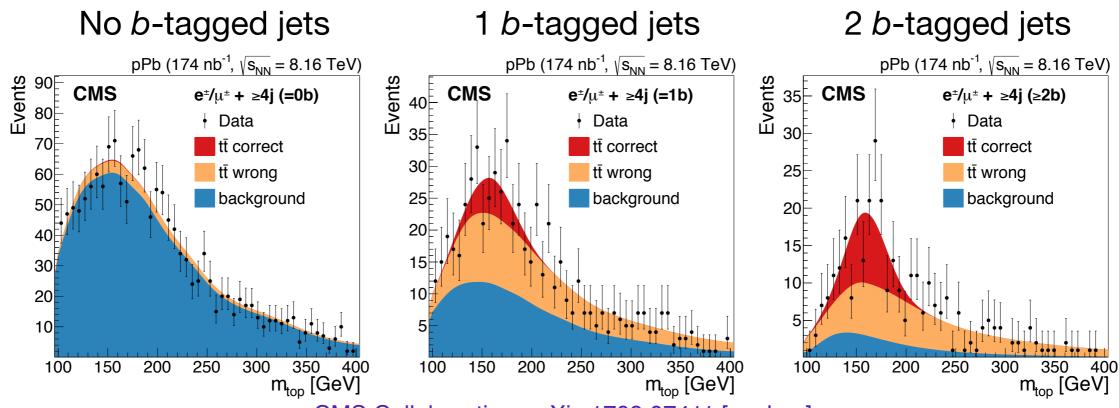

Cross section enhancement




In NN collisions, number of parton level interactions enhanced by a factor A²


This partially compensates the loss in statistics due to a lower luminosity

There is no pile-up in heavy ion collisions!



This allows to better identify primary vertices

Background reduction

For instance, misidentification rate of light-jets is smaller in pPb than in pp events (0.1 % vs 0.8%)

CMS Collaboration, arXiv:1709.07411 [nucl-ex]

Lower instantaneous luminosity (!)

The lower instantaneous luminosity can enable to lower the trigger thresholds

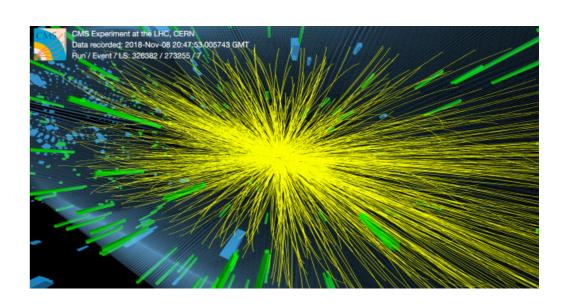
Can test regions of parameter space that are difficult to be tested with protons

E.g. scenarios involving light mediators result in signatures with low transverse momentum p_T

Larger track multiplicity

Huge number of tracks from PbPb events, but same vertex

In ATLAS/CMS tracking acceptance


For central events at $\sqrt{s_{\mathrm{PbPb}}} = 5.52~\mathrm{TeV}$ ALICE Collaboration, arXiv:1512.06104 [nucl-ex] ~ 10 000 charged tracks

In pp multiplicity mainly due to pile-up

CMS Collaboration, arXiv:1507.05915 [hep-ex] ATLAS Collaboration, arXiv:1606.01133 [hep-ex] ALICE Collaboration, arXiv:1509.08734 [nucl-ex]

G. Apollinari, I. Béjar Alonso, O. Brüning, M. Lamont, and
 L. Rossi, 10.5170/CERN-2015-005
 G. Apollinari, O. Brüning, T. Nakamoto and L. Rossi,
 arXiv:1705.08830 [physics.acc-ph]

- ~ 750 charged tracks for Run 3
- ~ 5 000 charged tracks at HL-LHC

Not big difference at HL-LHC, and we expect vertex reconstruction to be affected more from pile-up than from track multiplicity (cf. b-tagging performance in top searches with *pp* and *p*Pb)

Initial bunch intensity

The initial number of ions per bunch N_b is a key parameter for luminosity

Luminosity at one interaction point is proportional to ${\cal N}_b^2$

We use the empirical expression

$$N_b \begin{pmatrix} A \\ Z \end{pmatrix} = N_b \begin{pmatrix} 208 \\ 82 \end{pmatrix}$$
Pb $\left(\frac{Z}{82} \right)^{-p}$

where
$$p = 1$$
 conservative assumption $p = 1.9$ **optimistic** assumption

J. Jowett, Workshop on the physics of HL-LHC, and perspectives at HE-LHC, (2018)

The XeXe run achieved p = 0.75 after only few hours of tuning

This allows to be optimistic

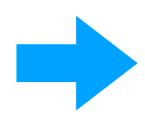
Result for different ions

pp and PbPb are two extreme casesIntermediate ions could be interesting

$$p = 1.9$$

 $t_a = 2.5 \text{ h}$

			Cross section									
	M [GeV]	$\sqrt{s_{NN}}$ [TeV]	$\sigma_{ m EMD}$ [b]	$\sigma_{ m BFPP}$ [b]	$\sigma_{ m had}$ [b]	$\sigma_{ m tot}$ [b]	σ_W [nb]	$ \begin{array}{c} A^2 \sigma_W \\ [\mu b] \end{array} $	L_0 $[1/\mu b s]$	$ au_b$ [h]	$L_{ m ave} \ \left[1/\mu m b s ight]$	$N_{ m N}/N_p$ [1]
1 ₁ H	0.931	14.0	0	0	0.0710	0.07	56.0	0.0560	21.0×10^3	75.0	15.0×10^3	1
$^{16}_{8}{ m O}$	14.9	7.00	0.074	24×10^{-6}	1.41	1.48	28.0	7.17	94.3	6.16	35.2	0.30
$^{40}_{18}{ m Ar}$	37.3	6.30	1.2	0.0069	2.6	3.81	25.2	40.3	4.33	11.2	2.00	0.0957
$_{20}^{40}\mathrm{Ca}$	37.3	7.00	1.6	0.014	2.6	4.21	28.0	44.8	2.90	12.4	1.38	0.0735
$^{78}_{36}\mathrm{Kr}$	72.7	6.46	12	0.88	4.06	16.9	25.8	157	0.311	9.40	0.135	0.0253
$^{84}_{36}\mathrm{Kr}$	78.2	6.00	13	0.88	4.26	18.1	24.0	169	0.311	8.77	0.132	0.0266
$^{129}_{54}{ m Xe}$	120	5.86	52	15	5.67	72.67	23.4	390	0.0665	4.73	0.0223	0.0103
²⁰⁸ ₈₂ Pb	194	5.52	220	280	7.8	508	22.1	955	0.0136	1.50	2.59×10^{-3}	0.0029


W boson # events production w.r.t. cross proton section runs

17

BSM search with central heavy ions collisions

In central collisions a QGP is created

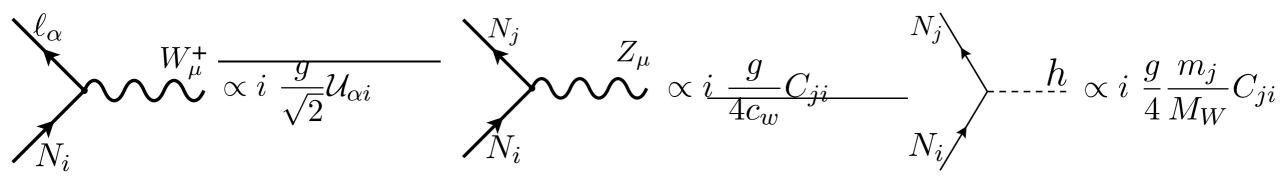
Very busy environment, but extending to few fm only

Difficult to probe prompt decays, but ideal for displaced vertices

Benchmark model: SM + n right-handed neutrinos (a.k.a. HNL)

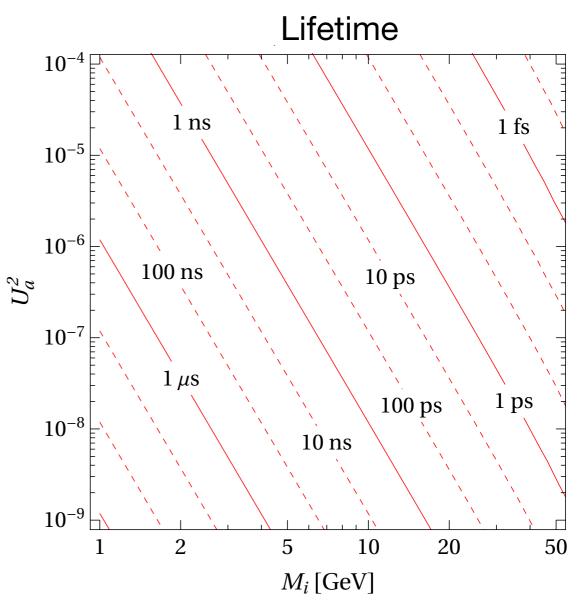
$$\mathcal{L} = \mathcal{L}_{SM} + \left(\frac{\mathrm{i}}{2}\overline{v_{Ri}}\partial v_{Ri} - F_{ai}\overline{\ell_L}_a \varepsilon \phi^* v_{Ri} - \frac{1}{2}\overline{v_{Ri}^c}(M_M)_{ij}v_{Rj} + \mathrm{h.c.}\right)$$

After EWSB with
$$<\!\!\varphi\!\!>$$
 = v , $m_{\nu}=-v^2FM_M^{-1}F^T$


n = 2 can already account for v data and BAU, n = 3 for DM as well

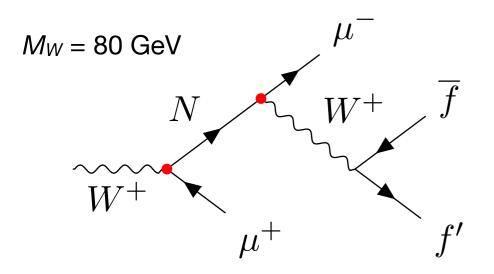
Particle spectrum

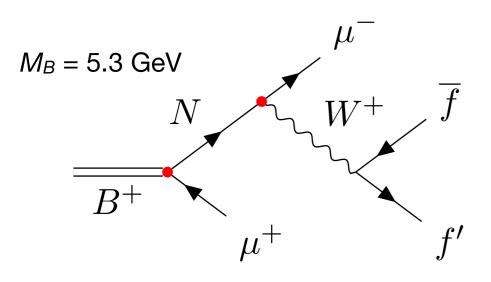
3 light neutrinos (sub-eV): mass differences and mixing fixed by oscillation data *n* HNLs: masses $\sim M_M$ and coupling with SM $\sim v$ F/M_M


HNL phenomenology

$$C_{ij} \equiv \sum_{\alpha=e,\mu,\tau} \mathcal{U}_{\alpha i}^* \; \mathcal{U}_{\alpha j}$$

Production cross section 10^{-4} 10^{-5} - 100 fb 10^{-6} U_a^2 10^{-7} 10^{-8} 10^{-9} 10 20 50 M_i [GeV]


 $\sigma \propto U_{a^2} \ for \ M \lesssim 50 \ GeV$


GeV masses result in observable macroscopic displacement

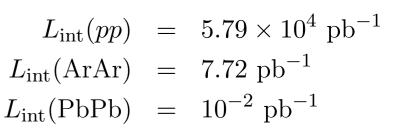
HNL production/decay

We consider two channels: W and B mediated HNL production

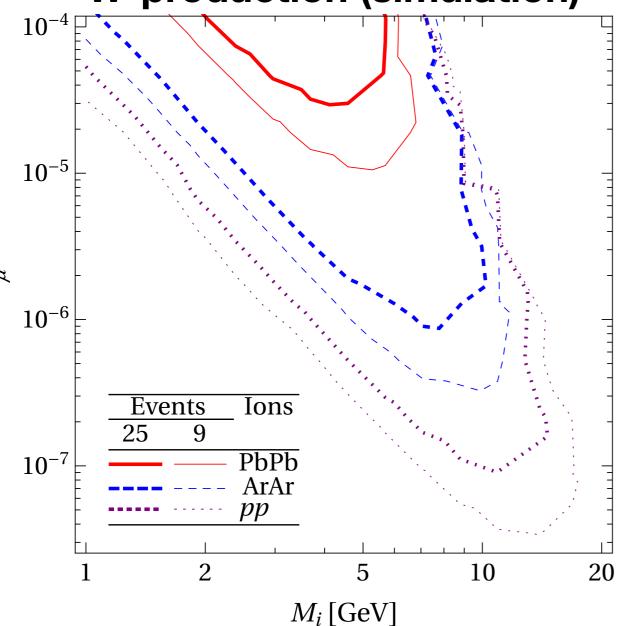
- Fully simulated using MadGraph5_aMC@NLO
- trigger on first μ with $p_T > 25$ GeV
- search for displaced μ with d > 5 mm

- Cannot be fully simulated in MadGraph5_aMC@NLO
- Use analytic estimate validated against W simulation

$$N_d = \frac{L_{\text{int}}\sigma_B^{[A,Z]}}{9} \left[1 - \left(\frac{M_i}{m_B}\right)^2 \right]^2 U_\mu^2 \left(e^{-l_0\lambda} - e^{-l_1\lambda} \right) f_{\text{cut}}$$

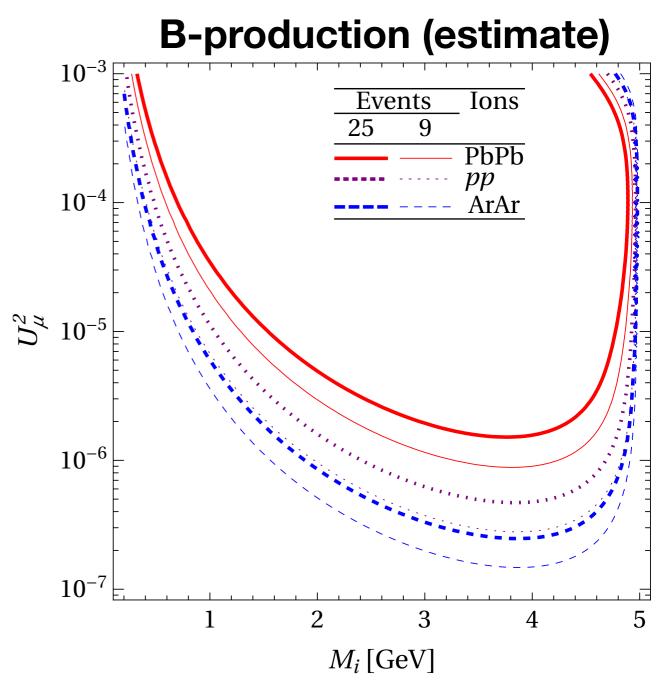

• trigger on first μ with $p_T > 3$ GeV for HI collisions, realistic online trigger for pp collisions

Rencontre de Physique des Particules 2019


• search for displaced μ with d > 5 mm

Results

Same running time



Complementary test of BSM

- Gain from low p_T overcompensates smaller luminosity
- Intermediate mass ions more competitive than pp and PbPb

Conclusion

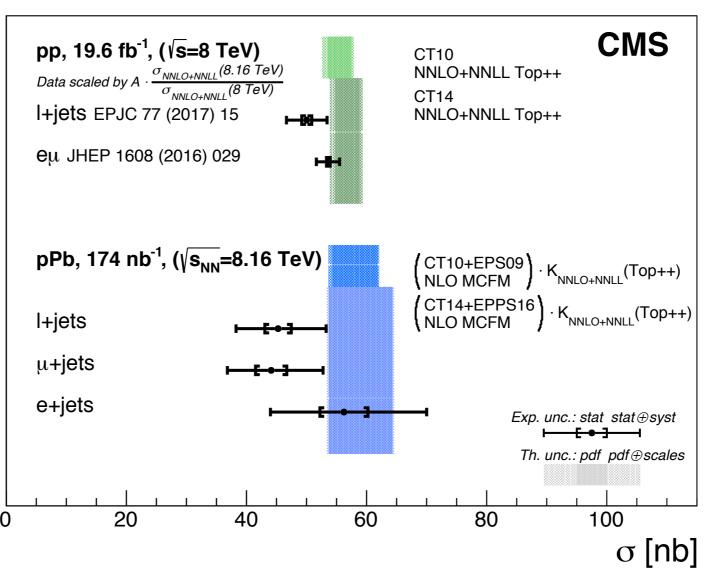
Heavy ion collisions allow to search for hidden new physics

Intermediate ions can be very interesting for searches of new physics

Lower trigger requirements could be the key advantage of heavy ion collisions over proton collisions

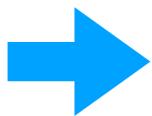
Better primary vertex identification is also an advantage (not exploited here)

Searches for displaced new physics circumvent the noisy inner tracker


HNL are a **simple example** of this idea, but other models are just as well testable

Backup

Example: SM tests with Heavy Ions

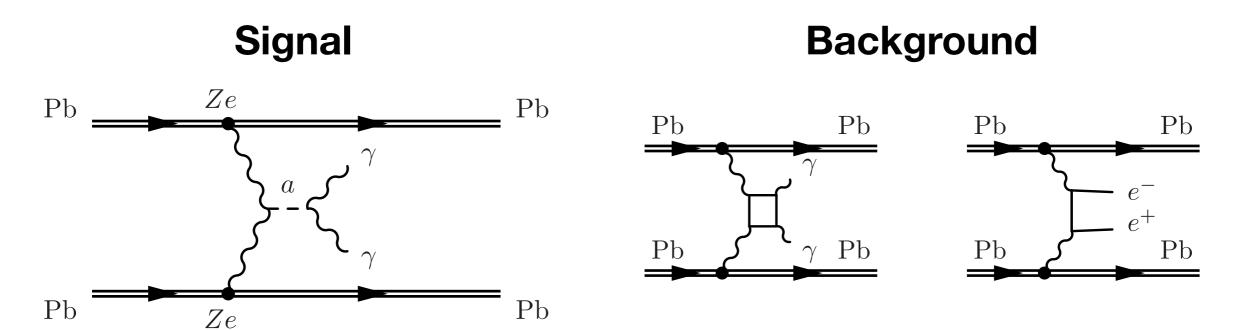

tt cross section measurement in pp and pPb collisions

CMS Collaboration, arXiv:1709.07411 [nucl-ex]

²⁰⁸₈₂Pb

174 nb⁻¹ collected in *p*Pb collisions

corresponds to $174 \times A_{Pb} \text{ nb}^{-1} \simeq 36 \text{ pb}^{-1}$

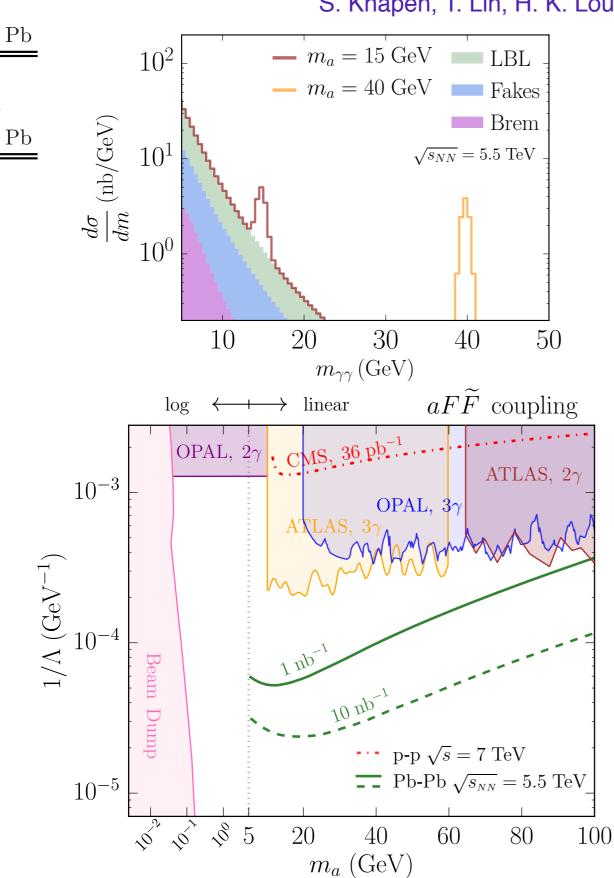

Example: BSM tests with Heavy Ions

Testing axion-like particles with ultra-peripheral heavy-ion collisions

S. Knapen, T. Lin, H. K. Lou and T. Melia, arXiv:1607.06083 [hep-ph]

$$\mathcal{L}_a = \frac{1}{2}(\partial a)^2 - \frac{1}{2}m_a^2a^2 - \frac{1}{4}\frac{a}{\Lambda}F\widetilde{F}$$

The photon-photon luminosity is enhanced by Z⁴ w.r.t. proton collisions



Nuclei do not fragment in the process

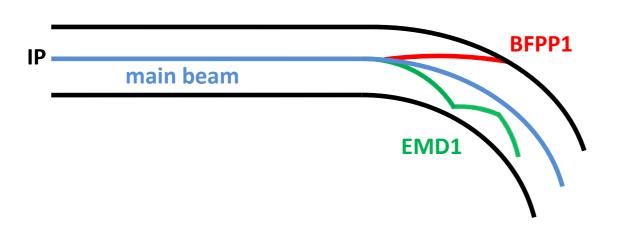
Rencontre de Physique des Particules 2019

Axion-like particles with Heavy Ion collisions

S. Knapen, T. Lin, H. K. Lou and T. Melia, arXiv:1607.06083 [hep-ph]

Signal and background simulation

Expected sensitivity


1 nb⁻¹: current PbPb run

10 nb⁻¹: HL PbPb run

PbPb searches can provide stronger limits w.r.t. pp ones

Two problems arise

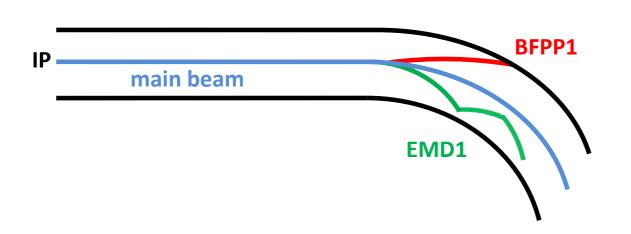
Creation of secondary beams with wrong charge to mass ratio

Risk of quenching magnets!

M a c h i n e

M

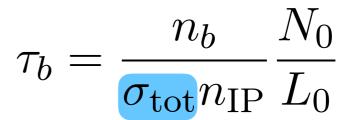
a


C

S

Impact of electromagnetic processes

Two problems arise


Creation of secondary beams with wrong charge to mass ratio

Risk of quenching magnets!

$$\frac{\mathrm{d}N_b}{\mathrm{d}t} = -\frac{N_b^2}{N_0 \tau_b}$$

- N_b: number of ions per bunch
- N₀: initial value for N_b
- n_b: number of bunches per beam
- n_{IP}: number of interaction points
- L₀: initial value for luminosity

Larger value of σ_{tot}

Faster beam decay

M. Benedikt, D. Schulte and F. Zimmermann, Phys. Rev. ST Accel. Beams 18 (2015) 101002

Luminosity estimation

From
$$\frac{\mathrm{d}N_b}{\mathrm{d}t} = -\frac{N_b^2}{N_0 \tau_b}$$
 $N_b(t) = \frac{N_0}{1+\theta_t}$ with $\theta_t = \frac{t}{\tau_b}$

The luminosity at one interaction point is $L=k\ N_b^2$

where k is a parameter depending on the other beam properties (revolution frequency, number of bunches, emittance, width)

The integrated luminosity is thus $\Sigma(t) = L_0 \tau_b \frac{\theta_t}{1 + \theta_t}$

Turnaround time *t_a*: average time between two physics runs

Average luminosity
$$L_{\mathrm{ave}}(t) = \frac{\Sigma(t)}{t+t_{\mathrm{ta}}}$$
 maximised $t_{\mathrm{opt}} = \tau_b \sqrt{\theta_{\mathrm{ta}}}$

$$L_{\text{ave}}(t_{\text{opt}}) = \frac{L_0}{\left(1 + \sqrt{\theta_{\text{ta}}}\right)^2}$$