Supersymmetry: Status 2018/19

Ulrich Ellwanger Laboratoire de Physique Théorique Univ. Paris-Sud/Paris-Saclay

Supersymmetry addresses the following shortcomings of the SM:

- The Hierarchy Problem
- What is Dark Matter?
- Unification of gauge couplings (quarks and leptons fill complete SU(5) representations, but gauge couplings do not quite unify in the Standard Model without Supersymmetry)
- Possibly: the \sim 3 σ deviation of the measured anomalous magnetic moment of the muon a_{μ} w.r.t. the Standard Model

BUT: Up to now, no significant sign for Supersymmetry at the LHC

Status of the MSSM after 36 fb^{-1} at the LHC

Better not rely on interpretations of limits within simplified models (simplified decay cascades, typically 1 step), but

- consider versions of the "pMSSM" (differ by the number of independent parameters/soft Supersymmetry breaking terms at the weak scale)
- consider all (most relevant) searches by ATLAS and CMS simultaneously, interprete with realistic branching ratios and decay cascades within these models
- require the Higgs (H_{125}) mass and couplings within present limits
 - \rightarrow Need a large soft Supersymmetry breaking A_{top} and/or large soft Supersymmetry breaking stop mass terms
 - ightarrow large rad. corrections to a soft Supersymmetry breaking Higgs mass term
 - \rightarrow a "little" finetuning problem
- Finally: derive lower limits on sparticle masses at 95% confidence level

The Dark Matter Issue

Case of generic annihilation cross sections of higgsinos/winos/binos as LSP χ_1^0 :

• Higgsinos and winos annihilate too fast

 \rightarrow Relic density too small (unless $M_{\chi_1^0} \gtrsim 1 \text{ TeV} \rightarrow M_{Squark, Slepton} > 1 \text{ TeV}$)

• Binos annihilate too slow $ightarrow \Omega h^2$ too large

 \rightarrow Binos as LSP/DM require enhanced annihilation cross sections:

- Large bino/wino/higgsino mixing requires tuning given the relatively small off-diagonal elements of the 4 \times 4 neutralino mass matrix
- coannihilation with charginos/sleptons/stops ($\rightarrow M_{\chi_1^0} > 100$ GeV since near-degeneracy is required), or
- annihilation via H_{125} or heavy H/A-funnels

 \rightarrow Higgsinos/winos as LSP lighter than 1 TeV require other sources for DM (their lower relic densities would allow to alleviate constraints from direct DM detection which are strong)

Or: unconventional cosmological evolution

Recent pMSSM Scans

GAMBIT collaboration (1705.07917), pMSSM7:

- Gaugino mass ratios motivated by GUT: $M_3/lpha_s=M_2/lpha_2=M_1/lpha_1$
- Degenerate soft squark/slepton masses, but free $A_t \neq A_b$ (the muon anomalous magnetic moment a_μ cannot be fitted)
- Free soft Higgs masses M_{H_u} , M_{H_d} , $\tan \beta \ (\rightarrow \mu, B_\mu \text{ fixed by } M_Z, \tan \beta)$
- $\Omega h^2 \lesssim 0.1189$ (smaller Ωh^2 alleviates constraints from direct DM detection, but requires additional sources of dark matter)

MasterCode (1710.11091), pMSSM11:

- Free gaugino masses
- Different soft squark/slepton masses for the first two/third generations, free $A_t = A_b$
- Free μ , tan β , M_A
- $\Omega h^2 = 0.1186 \pm 0.004$
- With or without fits to the muon anomalous magnetic moment a_{μ}

Limits on sparticle masses (Within 2σ of the "best fit point" to numerous search signal regions mainly from sparticle searches by ATLAS/CMS)

MasterCode: The parameters of the "best fit points" with or w/o a_{μ} are completely different!

	GAMBIT	MasterCode with a_{μ}	MasterCode w/o a_{μ}
$M_{\chi_1^0}$	\gtrsim 60 GeV (H'ino)	90 – 500 GeV (bino)	> 90 GeV (H'ino)
$M_{\chi_1^{\pm}}$	\gtrsim 90 GeV	\gtrsim 90 GeV	\gtrsim 90 GeV
$M_{\tilde{g}}$	$\gtrsim 1,0$ TeV	$\gtrsim 1,8$ TeV	$\gtrsim 1,0$ TeV
$M_{\tilde{q}}$	$\gtrsim 1,2$ TeV	$\gtrsim 1,9$ TeV	\gtrsim 800 GeV
M _ĩ	\gtrsim 0, 5 TeV	\sim 500 GeV/ \gtrsim 1,0 TeV	$\gtrsim 500$ GeV
$M_{ ilde{ au}}$	$\gtrsim 1,3$ TeV	$\gtrsim 110{ m GeV}$	$\gtrsim 110$ GeV
$M_{ ilde{\mu}}$	$\gtrsim 1,3$ TeV	110 – 770 GeV	$\gtrsim 110$ GeV
M _A	$\gtrsim 500$ GeV	$\gtrsim 800 \; { m GeV}$	$\gtrsim 800~{ m GeV}$

No sign for "dark spots" in the combined signal regions (light sparticles escaping detection)

→ Limits on squarks/gluinos depend strongly on assumptions (possible decay cascades)

NMSSM

- Extra neutral CP-even and CP-odd scalars H_S , A_S (not degenerate!) on top of the MSSM-like heavy ~degenerate SU(2) doublets H/A
- Extra singlino \tilde{S} on top of the MSSM-like charged/neutral bino/wino/higgsinos
- H_S , A_S , \tilde{S} have small couplings to SM particles/MSSM sparticles, except to the Higgs sector from a coupling $\lambda \tilde{H}_u \tilde{H}_d \tilde{H}_S$ in the superpotential (in terms of superfields)
- \rightarrow Small direct production cross sections proportional to mixing angles² ~ λ^2 , but possible decay products of SM particles/MSSM sparticles
- \rightarrow Still: H_S , A_S decay into SM particles like H_{125} due to mixing

 \rightarrow Searches for $ggF \rightarrow H_S \rightarrow \gamma\gamma$ with $M_{H_s} < 125$ GeV are sensitive to viable cross sections \times BR in the NMSSM:

From CMS-HIG-17-013 (13 TeV)

Possible Xsect \times BR in the NMSSM for 13 TeV using limits from 8 TeV, from 1512.04281

Searches for $H_{125} \rightarrow A_5 A_5 / H_5 H_5$ are sensitive to BSM branching fractions of H_{125} allowed by indirect constraints from measured H_{125} couplings

Many possible final states, many recent and ongoing searches by ATLAS/CMS

NMSSM after 2017 LEP/LHC constraints

Significant improvement in the $\mu\mu bb$ channel!

If the singlino \tilde{S} is the LSP (I)

A good DM candidate: a relic density $\Omega h^2 \sim 0.119$ is possible even if \tilde{S} is very light (a few GeV) through annihilation via A_S funnel (\neq MSSM)

Constraints from direct detection experiments:

coloured region: NMSSM points allowed by constraints from LUX/PandaX-II \rightarrow Xsect possibly below the neutrino floor (black curve):

(from 1806.09478)

If the singlino \tilde{S} is the LSP (II)

Every NLSP (neutralino, chargino, slepton, stop...) will decay into $\tilde{S} + H_{125}/H_S/A_S/Z, W, lepton, top...,$ the only available decay channels due to R-parity conservation

Notably if \tilde{S} is light (a few GeV) AND $M_{NLSP} \approx M_{\tilde{S}} + M_X$, $X = H_{125}/H_S/A_S/Z$: Little energy is given to \tilde{S} in any decay $NLSP_{heavy} \rightarrow X_{heavy} + \tilde{S}_{light}$ \rightarrow Little E_T^{miss} from \tilde{S} in all Susy searches

 \rightarrow Reduced lower limits on sparticle masses (A.Teixeira, U.E., 1406.7221, 1412.6394)

Re-analysis of sensitivities of the CMS squark search via jets and E_T^{miss} (1802.02110, after 36 fb⁻¹ at 13 TeV) by A. Titterton et al., 1807.10672:

MSSM with bino LSP Assume $\tilde{q} \rightarrow q + bino$

NMSSM with $\tilde{q} \rightarrow q + bino \rightarrow q + \tilde{S} + H_{125}$ $M_{bino} = M_{\tilde{S}} + M_{H_{125}} + 2 \text{ GeV}$

(red/black curves: expected/observed limits)

NMSSM: strong reduction of the lower limit on M_{Squark} for small $M_{LSP} = M_{\tilde{S}}!$

Given the present absence of significant excesses:

What are the constraints on the NMSSM parameter space (masses and couplings)?

A simple but highly nontrivial question given the larger parameter space, and the possibilities of "dark spots": reduced sensitivities in case of quenched spectra, complicated decay cascades, ...

"Bottom up" approach: Start with constraints on neutralinos/charginos, the lower ends of heavier sparticle decay cascades:

Neutralino/chargino masses and couplings are needed for their simulations!

Require – as promised by Supersymmetry – a viable DM relic density consistent with constraints from direct DM detection

At the LHC, neutralinos/charginos are produced via $W^{\pm *} \rightarrow \chi_i^0 + \chi_j^{\pm}$ (or $Z^* \rightarrow \chi_i^{\pm} + \chi_j^{\mp}, \chi_i^0 + \chi_j^0$)

Searches by ATLAS/CMS: Trileptons from Z + W (or *bb* from H_{125}):

Results are typically interpreted for wino-like $\chi_2^0 + \chi_1^{\pm}$: Largest cross sections \rightarrow strongest constraints

But: Higgsinos have only half the cross section (even adding χ^0_2 , χ^0_3) \rightarrow weaker constraints

For limits on the NMSSM singlino-higgsino sector (with C. Hugonie, 1806.09478): Scan the parameter space with singlino LSP, require a viable relic density consistent with constraints from direct DM detection, apply bounds from the CMS trilepton search in 1801.03957 (the strongest ones) Comparison of limits the in the $M_{\chi_1^0}/M_{\chi_1^\pm} \sim M_{\chi_2^0}$ plane:

CMS, assuming wino-like χ_2^0 and χ_1^{\pm} : NMSSM, singlino LSP and higgsino-like

Blue: Excluded iff the bino mass satisfies $M_1 > 300$ GeV as motivated by the GUT relation $M_1 \approx M_{Gluino}/6$ and $M_{Gluino} \gtrsim 1.8$ TeV \rightarrow no bino/higgsino mixing

 \rightarrow Substantial reduction of limits!

Allowed regions in the plane $M_{\tilde{\chi}_1^{\pm}} - M_{\tilde{\chi}_1^{0}}$ in the constrained NMSSM: universal soft susy breaking terms at the GUT scale, but non-universal soft Higgs mass terms (allows to estimate the necessary amount of finetuning):

→ Relatively low finetuning for $M_{\tilde{\chi}_1^0} \sim M_Z/2$, $M_{\tilde{\chi}_1^0} \sim M_{H125}/2$ or $M_{\tilde{\chi}_1^0} \sim M_{\tilde{\chi}_1^\pm}$ where s-channel annihilation or co-annihilation is possible Otherwise: s-channel annihilation via A_S with $M_{\tilde{\chi}_1^0} \sim M_{A_S}/2$ → Many regions with relatively low fine-tuning ≈ 100 remain to be tested

Dark Spots for neutralino/chargino searches:

- Mixed bino higgsino NLSP χ_2^0 : reduces production cross section further
- $\chi^0_{2,3}$ cascade decays via light H_S or A_S (escape searches for H_{125} via $b\bar{b}$)
- Light staus $\tilde{\tau}$ as NLSP: Hardly constrained by the LHC (limits from LEP), \rightarrow less "Trileptons" in the final state

Hints for Excesses?

Recent searches for neutralinos/charginos by ATLAS/CMS:

Some local $2-3\sigma$ excesses in some bins/some signal regions (e.g. ATLAS 1806.02293 in SR2 $\ell_{low/ISR}$ and SR3 $\ell_{low/ISR}$) \rightarrow If interpreted in terms of simplified models: No significant deviations from observed w.r.t. expected limits

GAMBIT collaboration, 1809.02097:

combine 4 ATLAS and 4 CMS electroweakino searches after 39 fb⁻¹ (\approx 10 signal regions each, up to \sim 40 bins), compare to simulations within a pMSSM electroweakino sector (bino, wino, higgsinos), allowing for cascade decays \rightarrow local 3,2 σ excess for $M_{\chi_1^0} \sim 50$ GeV, $M_{\chi_1^\pm} \sim 150$ GeV via contributions from χ_2^0 , χ_3^0 and χ_2^\pm multi-W/Z cascade decays ($M_{\chi_1^0} \sim 8 - 155$ GeV, $M_{\chi_1^\pm} \sim 104 - 259$ GeV within 95% CL)

But: Missing covariance matrices for stat. analysis including more search results

Viable relic density possible for bino-like LSP via Z/H_{125} funnels

\rightarrow To confirm or to rule out!

Conclusions:

- Due to $M_{Higgs} \sim 125$ GeV the MSSM has a "little" finetuning problem of at least $\mathcal{O}(1\%)$, of $\mathcal{O}(1\%)$ with (grand) unified soft Supersymmetry breaking terms, somewhat less in the NMSSM
- Of course: even with M_{Squark} , $M_{Gluino} > 1 2$ TeV Supersymmetry still solves the "BIG" hierarchy problem
- To derive definite constraints on the high dimensional parameter space is a challenging task, notably in the NMSSM (\rightarrow dark spots)
- But a MUST for the future unless significant excesses appear

