Dark Matter on small, subgalactic, scales

Julien Lavalle CNRS – LUPM Based on work with Gaétan Facchinetti, Thomas Lacroix, and Martin Stref (1610.02233, 1805.02402 + work in prep)

Rencontres de Physique des Particules

LPC – Clermont-Ferrand – January 24, 2019

Outline

- * Why are small scales interesting?
- * How to build a Milky Way halo for your favorite DM model?
- * Summary

The cold Dark Matter (CDM) paradigm

The cold Dark Matter (CDM) paradigm

So far, only gravitational evidence for DM (cosmological structures+CMB)

CDM successes:

- CMB peaks
- Successful structure formation (from CMB perturbations)
- => CDM seeds galaxies, galaxies embedded in DM halos
- Lensing in clusters + rotation curves of galaxies
- Also consistent with Tully-Fisher relation (baryonic physics)

Remaining issues:

- * Nature/origin of CDM new particle/s?
- * Some issues on **subgalactic** scales

NB: subhalos no longer a problem! (faint objects continuously discovered + structure formation theory improved with baryonic physics)

Dark Matter on galactic scales

Bulk of luminous matter

Oh+11

* Keplerian decrease of rotation velocity not observed

* Stars and gas not bounded to the object unless invisible mass there

=> Spherical dark matter halo could explain this + natural stabilizer

CDM issues on small (subgalactic) scales

James S. Bullock¹ and Michael Boylan-Kolchin²

¹Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA; email: bullock@uci.edu

²Department of Astronomy, The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712, USA; email: mbk@astro.as.utexas.edu

Core/cusp+diversity problems or regularity vs. diversity problems. Maybe baryonic effects, but clear statistical answer needed. Does same feedback recipe solve all problems at once?

CDM issues on small (subgalactic) scales

arXiv:1707.04256 James S. Bullock¹ and Michael Boylan-Kolchin²

¹Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA; email: bullock@uci.edu

²Department of Astronomy, The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712, USA; email: mbk@astro.as.utexas.edu

Governato+12 Cusps→cores

Core/cusp+diversity problems or regularity vs. diversity problems. Maybe baryonic effects, but clear statistical answer needed. Does same feedback recipe solve all problems at once?

CDM issues on small (subgalactic) scales

arXiv:1707.04256 James S. Bullock¹ and Michael Boylan-Kolchin²

¹Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA; email: bullock@uci.edu

²Department of Astronomy, The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712, USA; email: mbk@astro.as.utexas.edu

Governato+12 Cusps→cores

This has also motivated pure DM solutions: eg ULA, SIDM \rightarrow probes on small scales important tests for all DM scenarios

Probing dark matter on small scales 1. Gravitational searches

Gravity (VLTI) @ ESO

Gaia satellite @ ESA

++ astrometry + microlensing + pulsar timing arrays + others (SKA, etc.)

are probing / will probe DM in the Milky Way:

* Dark matter at the Galactic center (e.g. S2 orbit – Lacroix '18, Abuter+'18)

* Global spatial distribution of dark matter [e.g. McMillan'17, Eilers+'18]

* (Coarse-grained) phase-space distribution of DM (more difficult)

* DM subhalos / compact objects

[see e.g. Van Tilburg+'18, Dror+'19, etc.]

Probing dark matter on small scales 1. Gravitational searches

++ astrometry + microlensing + pulsar timing arrays + others (SKA, etc.)

are probing / will probe DM in the Milky Way:

* Dark matter at the Galactic center (e.g. S2 orbit – Lacroix '18, Abuter+'18)

* Global spatial distribution of dark matter [e.g. McMillan'17, Eilers+'18]

* (Coarse-grained) phase-space distribution of DM (more difficult)

* DM subhalos / compact objects

Gravity (VLTI) @ ESO

[see e.g. Van Tilburg+'18, Dror+'19, etc.]

Different scenarios predict different structuring properties on small scales \rightarrow additional test for DM candidates

Probing dark matter on small scales 2. Particle searches

Interaction with stars:

- \rightarrow global density + velocity distributions
- \rightarrow encounters with subhalos

Theoretical framework well defined:

- * Inflation model \rightarrow primordial power spectrum (model dependent)

. . .

- * Transfer function (modes entering bef/aft eq)
 * DM-plasma coupling properties (model dependent)
 * Matter power spectrum (model-dependent cutoff)
 * Press-Shechter and extensions → halo mass function (z)

Via Lactea II, Diemand+08

Aquarius, Springel+08 [see also Molitor+'15]

Via Lactea II, Diemand+08

Aquarius, Springel+08 [see also Molitor+'15]

Theoretical framework well defined:

- * Inflation model \rightarrow primordial power spectrum (model dependent)
- * Transfer function (modes entering bef/aft eq)
- * DM-plasma coupling properties (model dependent)
- * Matter power spectrum (model-dependent cutoff) * Press-Shechter and extensions \rightarrow halo mass function (z)

* Fully non-linear regime with cosmological simulations => Statistical properties of sub/halos + links with cosmology

Theoretical framework well defined:

- * Inflation model \rightarrow primordial power spectrum (model dependent)
- * Transfer function (modes entering bef/aft eq)
- * DM-plasma coupling properties (model dependent)
- * Matter power spectrum (model-dependent cutoff)
- * Press-Shechter and extensions \rightarrow halo mass function (z)
- * Fully non-linear regime with cosmological simulations => Statistical properties of sub/halos + links with cosmology

* Impact of baryons from hydro-runs / adiabatic growth of disks

15 kpc

Aquarius, Springel+08 [see also Molitor+'15]

Ad-A-3

Aquarius + baryons, Yurin+15

Theoretical framework well defined:

- * Inflation model \rightarrow primordial power spectrum (model dependent)
- * Transfer function (modes entering bef/aft eq)
- * DM-plasma coupling properties (model dependent)
- * Matter power spectrum (model-dependent cutoff)
- * Press-Shechter and extensions \rightarrow halo mass function (z)

* Fully non-linear regime with cosmological simulations => Statistical properties of sub/halos + links with cosmology

* Impact of baryons from hydro-runs / adiabatic growth of disks

Via Lactea II, Diemand+08

Aquarius, Springel+08 [see also Molitor+'15]

Problems are ...

- * Resolution limit: compare $10^5 M_{sun}$ with $10^{-10} M_{sun}$ (in DM-only)
- * ... getting worst in hydro-runs

* (Large uncertainties in baryonic physics)

- * How is "Milky Way-like" defined?
- * What's special with "8 kpc" in a cosmological simulation?

Making predictions for DM searches?

The Milky Way a strongly constrained system! (specific history + properties + observational data)

→ GAIA: THE GALACTIC CENSUS TAKES SHAPE

eesa

Aquarius, Springel+08 [see also Molitor+'15]

Gaia: Data Release 2 (DR2) @ESA

Making predictions for DM searches?

The Milky Way a strongly constrained system! (specific history + properties + observational data)

eesa

→ GAIA: THE GALACTIC CENSUS TAKES SHAPE

Aquarius, Springel+08 [see also Molitor+'15] -5 0 5 10 15 X (kpc) MW masers, Reid+14

15

Granularity of the Galactic DM halo: How to build a theoretically+observationally constrained model?

* Particle physics input: the minimal clustering scale

- * Structure formation: statistical properties of subhalos
- * Dynamical/kinematic constraints + tidal effects

Thermal relics from the early Universe

Production/annihilation => chemical+thermal equilibrium \rightarrow Chemical decoupling => freeze out ($x_f = m/T_f \sim 20$)

- \rightarrow Relic abundance fixed
- NB: links with indirect searches

Elastic collisions can ensure thermal contact long after freeze out (plasma very dense) => DM particles still belong to the plasma (same temperature).

Thermal contact ceases

 \rightarrow kinetic decoupling \implies free streaming $(x_k = m/T_k \sim 10^2 - 10^4)$

At matter-radiation eq., DM can only grow density fluctuations larger than path run after kinetic decoupling.

=> Sets the minimal scale of DM halo NB: links with direct searches / interaction with stars χ Annihilation / production f $\overline{\chi}$ \overline{f}

Solve moments of Liouville-Boltzmann equation for coupled species

 $\frac{d f(x^{\mu}, p^{\mu})}{d f(x^{\mu}, p^{\mu})} = \widehat{C}$

Thermal relics from the early Universe

Thermal relics from the early Universe

Minimal halo mass from $\sim 10^{-12} M_{sun}$ (>1 TeV WIMPs) to $\sim 10^{-3} M_{sun}$ (<10 GeV WIMPs) Like relic abundance, fixed by interaction properties of DM particles! [see also Schwartz+, Hofmann+, Green+, Bringmann+, Boehm+, etc.]

Initial statistical/cosmological properties

 $\frac{The initial mass function}{(\text{linear } + \sim \text{non-linear})}$ From primordial spectrum to mass function (ext. Press-Schechter) $P(k,t) = D_{+}^{2}(t) \left\{ P(k) \equiv A_{0} T^{2}(k) P_{\text{prim}}(k) \right\}$ $\sigma^{2}(R) \equiv \varepsilon_{R}(|\vec{r}| \rightarrow 0) = \int d\ln k \,\Delta^{2}(k) \left| \tilde{W}(k,R) \right|^{2}$ $\frac{dn}{dM} = \left\{ V_{M}^{-1} \equiv \frac{\rho_{M}}{M} \right\} \left| \frac{dF(\delta > \delta_{c})}{dM} \right| = \frac{\rho_{M}}{M^{2}} \left| \frac{d\ln \sigma}{d\ln M} \right| \nu f(\nu)$ $\frac{d\mathcal{P}(m_{200})}{dm_{200}} \approx m_{200}^{-\alpha_{m}} \left\{ 1 - e^{-\left[\frac{m_{200}}{m_{\text{cut}}}\right]^{n}} \right\}$

Typically a power law with a cutoff (minimal) mass.

Stref, PhD th. '18

Initial statistical/cosmological properties

The initial mass function (linear + ~non-linear) From primordial spectrum to mass function (ext. Press-Schechter) $P(k,t) = D_{+}^{2}(t) \{ P(k) \equiv A_{0} T^{2}(k) P_{\text{prim}}(k) \}$ $\sigma^2(R) \equiv \varepsilon_R(|\vec{r}| \to 0) = \int d\ln k \,\Delta^2(k) \,|\tilde{W}(k,R)|^2$ $\frac{dn}{dM} = \left\{ V_M^{-1} \equiv \frac{\rho_M}{M} \right\} \left| \frac{dF(\delta > \delta_c)}{dM} \right| = \frac{\rho_M}{M^2} \left| \frac{d\ln\sigma}{d\ln M} \right| \nu f(\nu)$ $\frac{d\mathcal{P}(m_{200})}{dm_{200}} \stackrel{\sim}{\propto} m_{200}^{-\alpha_m} \left\{ 1 - e^{-\left[\frac{m_{200}}{m_{\rm cut}}\right]^n} \right\}$ Typically a power law with a cutoff (minimal) mass. Concentration vs. mass 2.0 z = 0Log₁₀ MultiDarl Bolshoi Ishivama+13 Moore+01 Ishiyama 14 Anderhalden & Diemand 13 Diomand+0⁶ Log10 M200 [h-1 Ma] Sanchez-Conde+13 $m_{200} = 10$ $\sigma_{\rm in \ c} = 0.26$ WMAP1-RELAXED $+ \sigma_{\text{in c}} = 0.25$ $m_{200} = 10^0$ $- m_{200} = 10^6$ dP(c)/dc for 3 masses P(A log o Concentration lognormal RDF - 0.04 0.03 0.02 0.01 -0.4 0 0.4 -0.40 0.4 ∆log c|M ∆ log c|M Maccio+08 Stref, PhD th. '18

Stref, PhD th. '18

At MW formation, all (cosmological) properties factorize out

$$\frac{d^n N^0}{d\omega^n} = N_0 \, \frac{d\mathcal{P}_V^0(\vec{x})}{dV} \times \frac{d\mathcal{P}_m^0(m)}{dm} \times \frac{d\mathcal{P}_c^0(c,m)}{dc}$$

The dark halo: smooth vs subhalo component

$$\rho_{\rm tot}(R) = \rho_{\rm sm}(R) + \rho_{\rm sub}(R)$$

Overall profile constrained by non-linear theory: NFW, Einasto +/- cores +++++ **** Strongly constrained by MW kinematic data ****

$$\rho_{\rm sub}(R) = \frac{N_{\rm sub}}{K_w} \frac{d\mathcal{P}_V(R)}{dV} \int_{m_{\rm min}}^{m_{\rm max}} dm \int_{c_{\rm min}(R)}^{c_{\rm max}} dc \, m_t(r_t(c,m,R),m,c) \, \frac{d\mathcal{P}_m}{dm} \, \frac{d\mathcal{P}_c}{dc}$$

McMillan'11

++ will improve with Gaia ++

Global tidal effects

Competition between global MW potential and internal subhalo potential \rightarrow tidal radius

Solve EOM for vanishing test mass orbiting m and M (m<<M) in corotating frame of frequency ω (King '62, Spitzer '87).
=> Demand force to vanish (Lagrange points L2, L3)

$$\ddot{x} = \frac{Gm}{x^2} - \frac{GM}{(R-x)^2} - \omega^2 \left\{ (\mu/m)R - x \right\} = 0$$

Point-like Jacobi tidal radius

$$r_{t\bullet} = r_{t\bullet}(R, m, M) = \left\{\frac{m_t}{3M}\right\}^{1/3} R$$

Binney&Tremaine '87, '08

Extension to smooth systems

$$r_t = \left\{ \frac{m(r_t)}{3 M(R) \left(1 - \frac{1}{3} \frac{d \ln M(R)}{d \ln R} \right)} \right\}^{1/3} R$$

Smooth Jacobi tidal radius

Tides from stellar encounters and disk shocking

Encounters with stars: (Ostriker+,Weinberg+, Gnedin+,80-00, Berezinsky+03) * impulse approximation during fly-by

=> negligible wrt disk shocking

$$\Delta E = \frac{1}{2} \int d^3 \vec{r} \,\rho_{\rm int}(r) (\delta v_x - \delta \tilde{v}_x)^2$$
$$\Delta E = \frac{2\pi}{3} \left(\frac{2G_{\rm N}M_*}{v_{\rm rel}l^2}\right)^2 \int_0^R dr \, r^4 \,\rho_{\rm int}(r)$$

Disk shocking:

* impulse approximation during crossing

- * adiabatic invariance correction
- => the dominant effect

$$\frac{\mathrm{d}v_z}{\mathrm{d}t} = g_\mathrm{d}(R, z_\mathrm{p}) - g_\mathrm{d}(R, z_\mathrm{c})$$
$$\simeq \Delta z \, \frac{\partial g_\mathrm{d}}{\partial z} \left(z_\mathrm{c} \right) \,,$$
$$\Delta v_z = \int \mathrm{d}t \, \Delta z(t) \, \frac{\partial g_\mathrm{d}}{\partial z} \left[z_\mathrm{c}(t) \right]$$
$$\epsilon_k(z) \equiv \frac{2 \, g_{z,\mathrm{disk}}^2(z=0) \, z^2}{V_z^2} \left(A(\eta) \right)$$

Stellar disk

Impact of tidal disruption on mass/number profiles

Global subhalo mass density profile, Stref PhD th. '18

Subhalo number density profile, Stref PhD th. '18

Very large number density of tiny clumps expected locally! (for >1 TeV WIMPs, ~0.5/star gravitationally captured!)

Amplification of annihilation rate in the Milky Way

Annihilation profile + local/integrated boost, Stref+17

Annihilation profiles and local boosts, varying ε_{ρ} , Stref PhD. th '18

Minimal mass has impact for α >1.9 (always in the central regions due to effective mass index => local fluctuations suppressed) [see also Silk&Stebbins'93, Bergström+'98, JL+07, etc.]

Summary

* Milky Way a perfect place to probe DM properties on small scales! → complementarity of gravitational + non-gravitational effects/searches → very interesting test of DM scenarios (even feebly-interacting DM)!

* Theoretical + observational self-consistence of DM distribution very important: global + granularity + phase-space properties

* Generic semi-analytic method to build a Milky Way halo (Stref+'17-19), which includes information from:

- the primordial power spectrum (can be tuned to preferred inflation model)
- structure formation (Press-Schechter theory + concentration model)
- current observational constraints (to be updated with Gaia)

=> can be compared with cosmological simulations on relevant scales + probe arbitrarily small scales + self-consistently tuneable to the real Milky Way

- * Room for improvement (ongoing)
- * Can be applied to all CDM candidates: WIMPs, axions, PBHs, etc.
- * Predictions for / constraints from WIMP searches being revised:
- → gamma rays + antimatter cosmic rays (Facchinetti, Lacroix, Stref+ in prep)
- \rightarrow capture of mini-halos by stars! (new)

* Application to e.g. PBH microlensing (Clesse+ in prep)

Thermal production in the early Universe

 $\bar{\chi}$

A

Ā

Master equation: Boltzmann equation (e.g. Lee & Weinberg '77, Bernstein+'85-88)

$$\frac{df(x^{\mu}, p^{\mu})}{d\lambda} = \widehat{C}[f] \longrightarrow \frac{dY_{\chi}}{dx} \propto \frac{g_{\star}^{1/2}(x)}{x^2} \langle \sigma v \rangle \left\{ \frac{Y_{\chi, eq}^2}{Y_{\chi, eq}^2} - \frac{Y_{\chi}^2}{Y_{\chi}^2} \right\}$$

Thermal production in the early Universe

 $\bar{\chi}$

A

Ā

Master equation: Boltzmann equation (e.g. Lee & Weinberg '77, Bernstein+'85-88)

$$\frac{df(x^{\mu}, p^{\mu})}{d\lambda} = \widehat{C}[f] \longrightarrow \frac{dY_{\chi}}{dx} \propto \frac{g_{\star}^{1/2}(x)}{x^2} \langle \sigma v \rangle \left\{ \frac{Y_{\chi,eq}^2}{Y_{\chi,eq}^2} - \frac{Y_{\chi}^2}{Y_{\chi}^2} \right\}$$

Thermal production in the early Universe

Master equation: Boltzmann equation (e.g. Lee & Weinberg '77, Bernstein+'85-88)

$$\Omega_{
m WIMP} \stackrel{\sim}{\propto} rac{1}{g_{\star}^{1/2}(x_{
m dec}) \langle \sigma v
angle} \ \Omega_{
m FIMP} \stackrel{\sim}{\propto} g_{\star}^{1/2}(x_{
m dec}) \langle \sigma v
angle$$

 $\bar{\chi}$

A

Subhalo tidal mass

$$m_t = m(r_t) = 4\pi r_s^3 \int_0^{x_t} dx \, x^2 \, \rho(x \, r_s) \, \zeta(x_t)$$

$$dm = m_s - m_s \text{ given back to the smooth component}$$

Disruption function

200

$$\zeta\left(x_t \equiv \frac{r_t}{r_s}\right) \equiv \theta\left(x_t - \varepsilon_t\right)$$

Disruption free parameter ε_t

$$x_t = \frac{r_t}{r_s} \ge \varepsilon_t \iff c_{200} \ge c_{\min}(R)$$

Minimal concentration independent from mass!

Subhalo tidal mass

$$m_t = m(r_t) = 4\pi r_s^3 \int_0^{x_t} dx \, x^2 \, \rho(x \, r_s) \, \zeta(x_t)$$

 $dm = m_{200} - m_t$ given back to the smooth component

Disruption function

$$\zeta\left(x_t \equiv \frac{r_t}{r_s}\right) \equiv \theta\left(x_t - \varepsilon_t\right)$$

Disruption free parameter ε_t

$$x_t = \frac{r_t}{r_s} \ge \varepsilon_t \iff c_{200} \ge c_{\min}(R)$$

Minimal concentration independent from mass!

How much is ε_t ???

Minimal concentration independent from mass!

Subhalo tidal mass

$$m_t = m(r_t) = 4\pi r_s^3 \int_0^{x_t} dx \, x^2 \, \rho(x r_s) \, \zeta(x_t)$$

 $dm = m_{200} - m_t$ given back to the smooth component

Disruption function

$$f\left(x_t \equiv \frac{r_t}{r_s}\right) \equiv \theta\left(x_t - \varepsilon_t\right)$$

Disruption free parameter ε_{t}

$$x_t = \frac{r_t}{r_s} \ge \varepsilon_t \iff c_{200} \ge c_{\min}(R)$$

Minimal concentration independent from mass!

But ...

What about adiabatic invariants? \rightarrow If mini-cores dense enough, fast orbits should be resilient down to $x_t \ll 1 \dots$

Recent work by van den Bosh+'17'18 suggests tidal disruption strongly overestimated in simulations. See also Errani+17.

NB: again a resolution issue \rightarrow analytical arguments may catch on.

Subhalo tidal mass

$$m_t = m(r_t) = 4\pi r_s^3 \int_0^{x_t} dx \, x^2 \, \rho(x \, r_s) \, \zeta(x_t)$$

 $dm = m_{200}$ -m, given back to the smooth component

Disruption function

$$f\left(x_t \equiv \frac{r_t}{r_s}\right) \equiv \theta\left(x_t - \varepsilon_t\right)$$

Disruption free parameter ε_{i}

$$x_t = \frac{r_t}{r_s} \ge \varepsilon_t \iff c_{200} \ge c_{\min}(R)$$

Minimal concentration independent from mass!

But

What about adiabatic invariants? \rightarrow If mini-cores dense enough, fast orbits should be resilient down to $x_i \ll 1 \dots$

Recent work by van den Bosh+'17'18 suggests tidal disruption strongly overestimated in simulations. See also Errani+17.

NB: again a resolution issue \rightarrow analytical arguments may catch on.

Minimal concentration vs position, Stref PhD th. '18 => mean concentration gets spatial-dependent (see also Pieri+11, Moline+15)

Post-tides properties

Concentration function cut from the left => spatial-dependent mass index!

Modified local mass function, Stref+17

Evolution of species in the Early Universe

$$\frac{d\,f(x^{\mu},p^{\mu})}{d\lambda} = \widehat{C}[f]$$

$$\frac{dY_{\chi}}{dx} \propto -\frac{g_{\star}^{1/2}(x)}{x^2} \left\langle \sigma v \right\rangle \left\{ Y_{\chi}^2 - Y_{\rm eq}^2 \right\}$$

$$T_{\chi} \equiv \left\langle \frac{p^2}{3m_{\chi}} \right\rangle = \frac{g_{\chi}}{3m_{\chi}n_{\chi}} \int p^2 f_{\chi}(p,t) \frac{\mathrm{d}^3 \mathbf{p}}{(2\pi)^3}.$$

$$\frac{\partial T_{\chi}}{\partial t} + 2HT_{\chi} = \gamma(T)(T - T_{\chi})$$

$$\gamma(T) = \frac{1}{48g_{\chi}m_{\chi}^3\pi^3} \sum_{\text{species }i} \int_{m_i}^{\infty} \mathrm{d}\omega f_i^{\mathrm{eq}}(\omega, t) \frac{\partial}{\partial\omega} \left(\int_{-4p_{\mathrm{cm}}^2}^0 (-t)\widetilde{|\mathcal{M}_i|^2} \mathrm{d}t \right)$$

$$\frac{\mathrm{d}\ln(y_{\chi})}{\mathrm{d}\ln(x_{\chi})} = -\left(1 + \frac{\mathrm{d}\ln\left(h_{\mathrm{eff}}(T)\right)}{3\,\mathrm{d}\ln\left(T\right)}\right)\frac{\gamma(T)}{H}\left(1 - \frac{y_{\chi}^{\mathrm{eq}}}{y_{\chi}}\right)$$

Boost factors in context

Bergström'09

Boost factor depends on integration volume!

See also Silk & Stebbins'93, Begström+99, Lavalle+07-08

J factors! (at last)

Stref PhD th '18

Kinetic decoupling, free streaming scale, and small-scale structures

$$\lambda_{\rm fs} = a_{\rm eq} \int_{t_{\rm kd}}^{t_{\rm eq}} dt \frac{v(t)}{a(t)} \approx v_{\rm kd} (a_{\rm kd}/a_{\rm eq})/H_{\rm eq}$$

* Density perturbations grow efficiently after matter-radiation equivalence

- * Kinetic decoupling time sets free-streaming scale
- * Other competing effects (collisional damping)
- => Minimal size of structures have impact on DM searches=> Depends on DM interaction properties

[e.g. Hofmann+01, Berezinsky+03, Green+04-05, Bertschinger 06, Bringmann+07]

Kinetic decoupling, free streaming scale, and small-scale structures

Searches for thermal dark matter

* Production at colliders (model dependent) => collider searches

* Annihilation/decay rate potentially large in dense DM regions: centers of halos + CMB => indirect searches

* Beware velocity dependence (scalar exchange between fermions v-suppressed; pseudo-scalar exchange is not)

- * elastic or inelastic scattering
- \rightarrow nuclear recoils at underground experiments
- => direct searches
- \rightarrow scattering with astrophysical objects
- => stellar physics
- => neutrinos from capture+annihilation in stars
- => indirect searches

* Beware velocity dependence (pseudo-scalar exchange v-suppressed; scalar exchange is not) e.g. Goodmann & Witten '84, Drukier+ '85

