
Probing New Physics in  
Lepton Flavour Violating Tau decays 

Emilie Passemar 
Indiana University/Jefferson Laboratory 

 
                          Rencontre de Physique des Particules 2019

          

               LPC Clermont-Ferrand, January 24, 2019  
              

In collaboration with A. Celis (LMU, Munich), 
    and V. Cirigliano (LANL) 
     PRD 89 (2014) 013008, 095014 

 
  



Outline  

1.  Introduction and Motivation 
 

2.  Charged Lepton-Flavour Violation from tau decays 

3.  Special Role of τ → µππ: hadronic form factors 

4.  Results 
 

5.  Conclusion and Outlook 



1.   Introduction and Motivation 



1.1  Why study charged leptons? 

•  In the quest of New Physics, can be sensitive to 
very high scale: 

–  Kaon physics:  
 
 
–  Charged Leptons:  
 
 
 
 

•  At low energy: lots of experiments e.g., 
MEG, COMET, Mu2e, E-969, BaBar, BelleI-II, BESIII, 
LHCb           huge improvements on measurements 
and bounds obtained and more expected 
 

•  In many cases no SM background:  
e.g., LFV, EDMs 

 

•  For some modes accurate calculations of  
hadronic uncertainties essential 

 

 
 

 

The new physics flavor scale

K physics: ϵK

sdsd

Λ2
⇒ Λ ! 105 TeV

Charged leptons: µ → eγ, µ → e, etc.

µeff

Λ2
⇒ Λ ! 103 TeV

There is no exact symmetry that can forbid such
operators
All other bounds on NP, like proton decay, maybe due
to exact symmetry

Y. Grossman Charged lepton theory Lecce, May 6, 2013 p. 10

The new physics flavor scale

K physics: ϵK

sdsd

Λ2
⇒ Λ ! 105 TeV

Charged leptons: µ → eγ, µ → e, etc.

µeff

Λ2
⇒ Λ ! 103 TeV

There is no exact symmetry that can forbid such
operators
All other bounds on NP, like proton decay, maybe due
to exact symmetry

Y. Grossman Charged lepton theory Lecce, May 6, 2013 p. 10

[µ → eγ]  

[εK]  

E 

ΛNP 

ΛLE 

Charged leptons very important to look for New Physics! 
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1.2  The Program The very basic of charged leptons

Muon LFC

µ → µγ

(g − 2)µ, (EDM)µ

νe ↔ νµ

νµ ↔ ντ

νe ↔ ντ

NeutrinoOscillations

τ → ℓγ

τ → ℓℓ+i ℓ
−

j

Tau LFV

Tau LFC

τ → τγ

(g − 2)τ , (EDM)τ

Muon LFV

µ+ → e+γ

µ+e− → µ−e+
µ−N → e+N ′

µ−N → e−N
µ+ → e+e+e−

LFV

Thanks to Babu
Y. Grossman Charged lepton theory Lecce, May 6, 2013 p. 15

  τ → ℓ + hadrons
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Intensity Frontier  
Charged Lepton WG’13 



2.   Charged Lepton-Flavour Violation  



2.1  Introduction and Motivation 

•  Lepton Flavour Violation is an « accidental » symmetry of the SM 
(mν=0) 
 

•  In the SM with massive neutrinos effective CLFV vertices are tiny  
due to GIM suppression        unobservably small rates! 
 

e.g.:		

•  Extremely clean probe of beyond SM physics 
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 µ → eγ

  
Br µ → eγ( ) = 3α

32π
U µi

*

i=2,3
∑ Uei

Δm1i
2

MW
2

2

< 10−54

 eµ

  Br τ → µγ( ) < 10−40⎡⎣ ⎤⎦

Petcov’77, Marciano & Sanda’77, Lee & Shrock’77… 



2.1  Introduction and Motivation 

•  In New Physics scenarios CLFV can reach observable levels in several 
channels 

 
 
 
 
 
 
 

•  But the sensitivity of particular modes to CLFV couplings is model dependent 

•  Comparison in muonic and tauonic channels of branching ratios, conversion 
rates and spectra is model-diagnostic 
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Lepton Flavor Violation in example BSM models 
� Neutrino-less tτ decays:  optimal hunting ground for non-Standard Model LFV effects

� Topologies are similar to those of tτ hadronic decays

� Current limits (down to ~ 10-8), or limits anticipated at next generation e+e- colliders, directly
confront many New Physics models

David Hitlin    1st Conference on CFLV - Lecce

3

May 8, 2013

Talk by D. Hitlin @ CLFV2013 



2.2  CLFV processes: tau decays 

•  Several processes: 
	
 

 
 

 
 
 

•  48 LFV modes studied at Belle and BaBar 

•   
 

Emilie Passemar 

   τ → ℓγ ,  τ → ℓα ℓβℓ β ,  τ → ℓY
  P ,  S,  V ,  PP , ...
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2.2  CLFV processes: tau decays 
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•  Several processes: 
	
 

 
 

 
 
 

•  Expected sensitivity 10-9 or better at LHCb, Belle II, HL-LHC?  

•   
 



   
 
 
 
 

 
•  Build all D>5 LFV operators: 

		
	
Ø  Dipole: 

	
	
	
	
	
	

	
	
	
	
	

•   
 

2.3  Effective Field Theory approach 
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L = LSM + C (5)

Λ
O (5) +

Ci
(6)

Λ 2 Oi
(6)

i
∑ + ...
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See e.g.  
Black, Han, He, Sher’02 
Brignole & Rossi’04 
Dassinger, Feldmann, Mannel, 
Turczyk’07 
Matsuzaki & Sanda’08 
Giffels et al.’08 
Crivellin, Najjari, Rosiek’13 
Petrov & Zhuridov’14 
Cirigliano, Celis, E.P.’14 
 
 

   
Leff

D ⊃ −
CD

Λ 2 mτ µσ
µν PL,RτFµν• Dipole

Dominant in SUSY-GUT and 
SUSY see-saw scenarios

Rich structure at dim=6

τ
 !τ

µ !µe.g. 



   
 
 
 
 

 
•  Build all D>5 LFV operators: 

		
Ø  Dipole: 

 

 
Ø  Lepton-quark (Scalar, Pseudo-scalar, Vector, Axial-vector): 
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Leff

D ⊃ −
CD

Λ 2 mτ µσ
µν PL,RτFµν

   
Leff

S ,V ⊃ −
CS ,V

Λ 2 mτ mqGFµ  ΓPL,Rτ  qΓq

• Dipole

Dominant in SUSY-GUT and 
SUSY see-saw scenarios

Rich structure at dim=6

Dominant in RPV SUSY and RPC 
SUSY for large tan(β) and low mA, 

leptoquarks 

q

q
• Scalar  
(Pseudo-scalar)

τ

µ

  ϕ ≡ h0 , H 0 , A0

e.g.  Γ ≡ 1 

• Dipole

Dominant in SUSY-GUT and 
SUSY see-saw scenarios

Rich structure at dim=6

Dominant in RPV SUSY and RPC 
SUSY for large tan(β) and low mA , 

leptoquarks 

q

q
• Scalar  
(Pseudo-scalar)

• Vector
Enhanced in  Type III seesaw (Z-penguin), 

Type II seesaw,   LRSM,  leptoquarks 

(Axial-vector) qq

μ eτ µ

Γ ≡ γ µ



   
 
 
 
 

 
•  Build all D>5 LFV operators: 

		
Ø  Dipole: 

 
Ø  Lepton-quark (Scalar, Pseudo-scalar, Vector,  

Axial-vector): 

Ø  Integrating out heavy quarks generates gluonic operator 
 
 
	
	

•   
 

2.3  Effective Field Theory approach 
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Λ
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Ci
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1
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•  Build all D>5 LFV operators: 

		
Ø  Dipole: 

 
Ø  Lepton-quark (Scalar, Pseudo-scalar, Vector,  

Axial-vector): 
 

Ø  4 leptons (Scalar, Pseudo-scalar, Vector,  
Axial-vector): 

	
	
	
	

•   
 

2.3  Effective Field Theory approach 
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SUSY see-saw scenarios

Rich structure at dim=6

Dominant in RPV SUSY and RPC 
SUSY for large tan(β) and low mA , 

leptoquarks 

q

q
• Scalar  
(Pseudo-scalar)

• 4 Leptons, ...

Type II and III seesaw,  RPV SUSY,  LRSM 

• Vector
Enhanced in  Type III seesaw (Z-penguin), 

Type II seesaw,   LRSM,  leptoquarks 

(Axial-vector) qq

μ e

τ
µ

µ

µ

e.g. 



   
 
 
 
 
•  Build all D>5 LFV operators: 

		
Ø  Dipole: 

 
Ø  Lepton-quark (Scalar, Pseudo-scalar, Vector,  

Axial-vector): 
	

Ø  Lepton-gluon (Scalar, Pseudo-scalar): 

 

Ø  4 leptons (Scalar, Pseudo-scalar, Vector,  
Axial-vector): 
	

•   Each UV model generates a specific pattern of them 
 
 
 

•   
 

2.3  Effective Field Theory approach 
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Λ
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2.4  Model discriminating power of Tau processes 

Emilie Passemar 

•  Summary table: 

 
 
 
 

•  The notion of “best probe” (process with largest decay rate) is model 
dependent 

 
 

•  If observed, compare rate of processes         key handle on relative strength 
between operators and hence on the underlying mechanism 

  

Discriminating power: τLFV matrix

16 

Celis, Cirigliano, E.P.’14 



2.4  Model discriminating power of Tau processes 

Emilie Passemar 

•  Summary table: 

 
 

•  In addition to leptonic and radiative decays, hadronic decays are very 
important          sensitive to large number of operators! 

•  But need reliable determinations of the hadronic part:  
form factors and decay constants (e.g. fη, fη’) 

  

Discriminating power: τLFV matrix

17 

Celis, Cirigliano, E.P.’14 



2.5  Ex: Non standard LFV Higgs coupling 

 

•   
  
 

 

    

 
 
•  Arise in several models  Cheng, Sher’97, Goudelis, Lebedev,Park’11  

	 	 			Davidson, Grenier’10	
 
 
 

•  Order of magnitude expected                     No tuning:  
 
•  In concrete models, in general further parametrically suppressed  
 
 

In the SM:   v
SMh i

ij ij
m

Y δ=

   
ΔLY = −

λij

Λ 2 fL
i fR

j H( )H †H  −Yij fL
i fR

j( )h
Goudelis, Lebedev, Park’11 
Davidson, Grenier’10 
Harnik, Kopp, Zupan’12 
Blankenburg, Ellis, Isidori’12 
McKeen, Pospelov, Ritz’12 
Arhrib, Cheng, Kong’12 
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LY = −mi fL

i fR
i − h YeµeLµR +YeτeLτ R +Yµτ µLτ R( ) + ...

Cheng, Sher’97 

Emilie Passemar 11 

1.1   Introduction: 

•  Consider the possibility of non-standard LFV couplings of the Higgs  
  

•  LFV has been discovered in the neutrino sector:         neutrino oscillations  
why not for the charged leptons?  

•   Arise in several models 
 
 

•  Order of magnitude expected:         No tuning: 
 
In concrete models, in general further parametrically suppressed 
 

1.1  Introduction  

Cheng, Sher’97, Goudelis, Lebedev,Park’11 
Davidson, Grenier’10 
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Yτµ"

Jefferson Lab, Mar 2 2015J. Zupan   Rare Higgs Decays

• what is a reasonable aim for precision on Yij?

• if off-diagonals are large ⇒ spectrum in 
general not hierarchical

• no tuning, if  
 

• in concrete models it will be typically further 
suppressed parametrically  

a general benchmark

15

Cheng, Sher, 1987

see e.g, Dery, Efrati, Nir, Soreq, Susic, 1408.1371;
Dery, Efrati, Hochberg, Nir, 1302.3229;

Arhrib, Cheng, Kong, 1208.4669

Cheng, Sher’97 

e.g.: Arhrib et al’12 
        Derry et al.’13,’14,  

2.1  Introduction 

  LY = −Yij fL
i fR

j( )h + h.c. + ...
In the SM:   

v
SMh i

ij ij
mY δ=

  
LY = −mi fL

i fR
i − h YeµeLµR +YeτeLτ R +Yµτ µLτ R( ) + ...



2.5  Ex: Non standard LFV Higgs coupling 

 

•   
  
 

 

•  High energy : LHC 
    

 
 
 
•  Low energy : D, S operators 

 
 

 
 

In the SM:   
v

SMh i
ij ij

m
Y δ=

Yτµ

Hadronic part treated with perturbative 
QCD 

   
ΔLY = −

λij

Λ 2 fL
i fR

j H( )H †H  −Yij fL
i fR

j( )h

Goudelis, Lebedev, Park’11 
Davidson, Grenier’10 
Harnik, Kopp, Zupan’12 
Blankenburg, Ellis, Isidori’12 
McKeen, Pospelov, Ritz’12 
Arhrib, Cheng, Kong’12 
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2.5  Ex: Non standard LFV Higgs coupling 

 

•   
  
 

 

•  High energy : LHC 
    

 
 
 
•  Low energy : D, S, G operators 

 
 

 
 

In the SM:   
v

SMh i
ij ij

m
Y δ=

Yτµ

Hadronic part treated with perturbative 
QCD 

   
ΔLY = −

λij

Λ 2 fL
i fR

j H( )H †H  −Yij fL
i fR

j( )h

Goudelis, Lebedev, Park’11 
Davidson, Grenier’10 
Harnik, Kopp, Zupan’12 
Blankenburg, Ellis, Isidori’12 
McKeen, Pospelov, Ritz’12 
Arhrib, Cheng, Kong’12 
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Reverse the process 
 
 
 

Yτµ

Hadronic part treated with  
non-perturbative QCD 

+ 



2.6  Constraints from τ → µππ

•  Tree level Higgs exchange 

 
 
 

•  Problem : Have the hadronic part under control, ChPT not valid at these 
energies! 
 

 Use form factors determined with dispersion relations matched at low 
 energy to CHPT 

 

 
•  Dispersion relations: based on unitarity, analyticity and crossing symmetry 

         Take all rescattering effects into account 
ππ  final state interactions important 

  

+

Emilie Passemar 

hh

21 

Daub, Dreiner, Hanhart, Kubis, Meissner’13 
Celis, Cirigliano, E.P.’14 



3.   Description of  the hadronic form factors 
 



•  Tree level Higgs exchange 
 
 

 
 
 
 

 
    
 
 
 

 
 

+

( )hqf ywith the form factors:  

Emilie Passemar 

hh

3.1  Constraints from τ     µππ 

64 

Emilie Passemar 

3.1  Constraints from τ → µππ

•  Tree level Higgs exchange 

 
 
  

+
hh
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Yτµ

couplings to the light quarks, ¯̀(1 ± �5)⌧ · q̄{1, �5}q. Finally, the diagram to the right, through

heavy-quarks in the loop generates gluonic operators of the type ¯̀(1±�5)⌧ ·GG and ¯̀(1±�5)⌧ ·GG̃.

When considering hadronic LFV decays such as ⌧ ! `⇡⇡ or ⌧ ! `P (P = ⇡, ⌘, ⌘0) one

needs the matrix elements of the quark-gluon operators in the hadronic states. In particular,

P-even operators will mediate the ⌧ ! `⇡⇡ decay and one needs to know the relevant two-

pion form factors. The dipole operator requires the vector form factor related to h⇡⇡|q̄�µq|0i
(photon converting in two pions). The scalar operator requires the scalar form factors related

to h⇡⇡|q̄q|0i. The gluon operator requires h⇡⇡|GG|0i, which we will reduce to a combination of

the scalar form factors and the two-pion matrix element of the trace of the energy-momentum

tensor h⇡⇡|✓µµ|0i via the trace anomaly relation:

✓µµ = �9
↵s

8⇡
Ga

µ⌫G
µ⌫
a +

X

q=u,d,s

mq q̄q . (2)

To impose robust bounds on LFV Higgs couplings from ⌧ ! `⇡⇡, we need to know the hadronic

matrix elements with a good accuracy. With this motivation in mind, we now discuss in detail

the derivation of the two-pion matrix elements.

3 Hadronic form factors for ⌧ ! `⇡⇡ decays

The dipole contribution to the ⌧ ! `⇡⇡ decay requires the matrix element

⌦

⇡+(p⇡+)⇡�(p⇡�)
�

�

1
2(ū�

↵u� d̄�↵d)
�

�0
↵ ⌘ FV (s)(p⇡+ � p⇡�)↵, (3)

with FV (s) the pion vector form factor. As for the scalar currents and the trace of the energy-

momentum tensor ✓µµ, the hadronic matrix elements are given by

⌦

⇡+(p⇡+)⇡�(p⇡�)
�

�muūu+mdd̄d
�

�0
↵ ⌘ �⇡(s) ,

⌦

⇡+(p⇡+)⇡�(p⇡�)
�

�mss̄s
�

�0
↵ ⌘ �⇡(s) ,

⌦

⇡+(p⇡+)⇡�(p⇡�)
�

�✓µµ
�

�0
↵ ⌘ ✓⇡(s) , (4)

with �⇡(s) and �⇡(s) the pion scalar form factors and ✓⇡(s) the form factor related to ✓µµ. Here

s is the invariant mass squared of the pion pair: s = (p⇡+ + p⇡�)2 = (p⌧ � p`)
2.

In what follows, we determine the form factors by matching a dispersive parameterization

(that uses experimental data) with both the low-energy form dictated by chiral symmetry and

the asymptotic behavior dictated by perturbative QCD. Numerical tables with our results are

available upon request.

3.1 Determination of the ⇡⇡ vector form factor

The vector form factor FV (s) has been measured both directly from e+e� ! ⇡+⇡� [31–35]

and via an isospin rotation from ⌧ ! ⇡�⇡0⌫⌧ [36, 37]. It has also been determined by several

theoretical studies [38–54].

6

  
s = p

π + + p
π −( )2
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3.2  How to describe the form factors?
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s is the invariant mass squared of the pion pair: s = (p⇡+ + p⇡�)2 = (p⌧ � p`)
2.

In what follows, we determine the form factors by matching a dispersive parameterization

(that uses experimental data) with both the low-energy form dictated by chiral symmetry and

the asymptotic behavior dictated by perturbative QCD. Numerical tables with our results are

available upon request.

3.1 Determination of the ⇡⇡ vector form factor

The vector form factor FV (s) has been measured both directly from e+e� ! ⇡+⇡� [31–35]

and via an isospin rotation from ⌧ ! ⇡�⇡0⌫⌧ [36, 37]. It has also been determined by several

theoretical studies [38–54].

6

•  Using LO ChPT: 

Voloshin (1985)

Using LO ChPT

Voloshin’85 
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3.2  How to describe the form factors?
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Donoghue, Gasser, Leutwyler’90 

Using the triple constraints of chiral 
symmetry, analyticity, and unitarity, 
together with exp. input from pion 
scattering 

Voloshin’85 

very far from the naive expectation 

extracted from Donoghue, Gasser, Leutwyler (1990) 

very far from the naive expectation
 

Using the triple constraints of chiral symmetry, 
analyticity, and unitarity,  together with 

exp. input from pion scattering

Voloshin (1985)

366 J.F. Donoghue at a!. / Decay of a light Higgs boson

~ ~
~

0=4

C /1o=B /

/~it=O
/

o /

---

o (a) V
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

\I~[Gev]

r‘H
rH~.-

IA

‘g[Gevl

Fig. 6. (a) Branching ratios as a function of Higgs masses. The full curves correspond to different
T-matrix inputs, specified in the caption to fig. 3. In addition, to exhibit the Zweig-rule violating
contributions, we also show the branching ratio which results if the term ji,, is dropped. V corresponds
to the lowest-order prediction of Voloshin, G = (2s + 11rn~.)/9.(b) The results for an extended range
of Higgs mass, which includes the results of our calculation of the decay H —‘ KK. The noise in the

calculation visibly increases with the mass of the Higgs.



•  Elastic approximation breaks down for the ππ S-wave at         threshold  
due to the strong inelastic coupling involved in the region of f0(980) 

 
 

  Need to solve a Coupled Channel Mushkhelishvili-Omnès problem 

 
 
      
 

•  Unitarity           the discontinuity of the form factor is known 
 

 
              
 

�
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3.3  Unitarity

  Donoghue, Gasser, Leutwyler’90 
          Moussallam’99 

Daub, Dreiner, Hanart, Kubis, Meissner’13 
 

Form factors
•  Two channel unitarity condition (ππ, KK) (OK up to  √s ~ 1.4 GeV)

n  = ππ, KK

•  General solution:

Canonical solution falling as 1/s for large s 
(obey un-subtracted dispersion relation) 

Polynomials 
determined by 

matching to ChPT

•  Solved iteratively, using input on s-
wave I=0  meson meson scattering

  n = ππ , KK

  Donoghue, Gasser, Leutwyler’90 
          Moussallam’99 

π 

π π 

π π 

π 

π 

π 

+ 

π 

π 

 K

 K

 K

 K

Scattering matrix: 
 

     ππ → ππ, ππ →  
        → ππ,           
 
 

KK
KK KK KK→ 

KK

  Donoghue, Gasser, Leutwyler’90 
      Osset & Oller’98 

          Moussallam’99 
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•  Inputs : ππ → ππ,  
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

•  A large number of theoretical analyses Descotes-Genon et al’01, Kaminsky et al’01, 
Buettiker et al’03, Garcia-Martin et al’09, Colangelo et al.’11 and all agree 

•  3 inputs: δπ (s), δK(s), η from B. Moussallam           reconstruct T matrix 
Emilie Passemar 27 

Garcia-Martin et al’09 
Buettiker et al’03 

3.4  Inputs for the coupled channel analysis 

KK



 
•  General solution to Mushkhelishvili-Omnès problem: 

•  Canonical solution found by solving dispersive integral equations iteratively 
starting with Omnès functions that are solutions of the one-channel unitary 
condition  
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Polynomial determined from a  
matching to ChPT + lattice 

Canonical solution falling as 1/s  
for large s (obey unsubtracted  
dispersion relations)  
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3.5  Dispersion relations 
General solution to Mushkhelishvili-Omnès problem: 

Canonical solution 
Polynomial determined 

from a matching to ChPT + lattice 

Canonical solution is found by solving dispersive integral equations 
iteratively starting with Omnès functions that are solutions of the one-
channel unitary condition 
 



•  Uncertainties: 
 

-  Varying scut  (1.4 GeV2 - 1.8 GeV2) 

-  Varying the matching conditions 

-  T matrix inputs 

0f
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 "σ "

0f

See also Daub et al.’13 



2.4  Comparison with ChPT 

 
 
 

•  ChPT, EFT only valid at low energy for 
 

 It is not valid up to E = !  
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4.   Results 



4.1  Spectrum 

ρ 0f

Dominated by 
Ø  ρ(770) (photon mediated) 
Ø  f0(980)  (Higgs mediated) 

 

h
+h
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Celis, Cirigliano, E.P.’14 



4.2  Bounds 

Emilie Passemar 33 BaBar’10, Belle’10’11’13  except last from CLEO’97 

Bound: 

  
Yµτ

h 2
+ Yτµ

h 2
≤ 0.13

Celis, Cirigliano, E.P.’14 



 

•  Dispersive treatment of hadronic part          bound reduced by one order of 
magnitude!  

 
 

•  ChPT, EFT only valid at low energy for 
               not valid up to                     ! 
 

4.3  Impact of our results 

Emilie Passemar 
( )E m mτ µ= −

p << 4 ~ 1 GeVfππΛ =

34 

Celis, Cirigliano, E.P.’14 



4.4  Constraints in the τµ sector 

•  Constraints from LE: 
Ø  τ → µγ :	best constraints  

but loop level 
       sensitive to UV  
 completion of the theory 

Ø  τ → µππ :  tree level  
diagrams 
       robust handle on LFV 

•  Constraints from HE: 
LHC wins for τ µ! 

•  Opposite situation for	µe! 

•  For LFV Higgs and  
nothing else: LHC bound  

  BR τ → µγ( ) < 2.2 ×10−9

  BR τ → µππ( ) < 1.5 ×10−11

14 9 Summary
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|  
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1  (8 TeV)-119.7 fbCMS
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BR<1%

BR<10%

BR<50%

ττ→ATLAS H

observed

expected
τµ→H

µ 3→τ

γ µ →τ

2/vτ
mµ

|=m
µτ

Yτµ
|Y

Figure 6: Constraints on the flavour-violating Yukawa couplings, |Yµt| and |Ytµ|. The black
dashed lines are contours of B(H ! µt) for reference. The expected limit (red solid line)
with one sigma (green) and two sigma (yellow) bands, and observed limit (black solid line)
are derived from the limit on B(H ! µt) from the present analysis. The shaded regions are
derived constraints from null searches for t ! 3µ (dark green) and t ! µg (lighter green). The
yellow line is the limit from a theoretical reinterpretation of an ATLAS H ! tt search [4]. The
light blue region indicates the additional parameter space excluded by our result. The purple
diagonal line is the theoretical naturalness limit YijYji  mimj/v2.

9 Summary
The first direct search for lepton-flavour-violating decays of a Higgs boson to a µ-t pair, based
on the full 8 TeV data set collected by CMS in 2012 is presented. It improves upon previously
published indirect limits [4, 26] by an order of magnitude. A slight excess of events with a
significance of 2.4 s is observed, corresponding to a p-value of 0.010. The best fit branching
fraction is B(H ! µt) = (0.84+0.39

�0.37)%. A constraint of B(H ! µt) < 1.51% at 95% confidence
level is set. The limit is used to constrain the Yukawa couplings,

p
|Yµt|2 + |Ytµ|2 < 3.6 ⇥ 10�3.

It improves the current bound by an order of magnitude.
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4.5  Hint of New Physics in h → τ µ ? 

CMS’15 

B2TiP, KEK, Tsukuba, Oct 28 2015J. Zupan   Higgs and Lepton Flavor Violation

• hint of a signal in h→τ"?

• CMS: Br(h→τ")=(0.89±0.39)%

• ATLAS: Br(H→"τ)=(0.77±0.62)% 

11

h→τ" exp. info

CMS-HIG-14-005

ATLAS, 1508.03372 ATLAS’15 
  BR h →τµ( ) = 0.84−0.37

+0.39( )%   BR h →τµ( ) = 0.53 ± 0.51( )%@2.4σ @1σ 
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CMS’17 
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Figure 10: Constraints on the flavour violating Yukawa couplings, |Yµt|, |Ytµ| (left) and
|Yet|, |Yte| (right), from the BDT result. The expected (red dashed line) and observed (black
solid line) limits are derived from the limit on B(H ! µt) and B(H ! et) from the present
analysis. The flavour-diagonal Yukawa couplings are approximated by their SM values. The
green (yellow) band indicates the range that is expected to contain 68% (95%) of all observed
limit excursions from the expected limit. The shaded regions are derived constraints from null
searches for t ! 3µ or t ! 3e (dark green) [41, 92, 93] and t ! µg or t ! eg (lighter
green) [41, 93]. The green hashed region is derived by the CMS direct search presented in
this paper. The blue solid lines are the CMS limits from [44] (left) and [45](right). The purple
diagonal line is the theoretical naturalness limit |YijYji|  mimj/v2 [41].
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Figure 6: Observed and expected 95% CL upper limits on the B(H ! µt) for each individual
category and combined. Left: BDT fit analysis. Right: Mcol fit analysis.

Table 6: Expected and observed upper limits at 95% CL and best fit branching fractions in
percent for each individual jet category, and combined, in the H ! et process obtained with
the BDT fit analysis.

Expected limits (%)
0-jet 1-jet 2-jets VBF Combined

etµ <0.90 <1.59 <2.54 <1.84 <0.64
eth <0.79 <1.13 <1.59 <0.74 <0.49
et <0.37

Observed limits (%)
0-jet 1-jet 2-jets VBF Combined

etµ <1.22 <1.66 <2.25 <1.10 <0.78
eth <0.73 <0.81 <1.94 <1.49 <0.72
et <0.61

Best fit branching fractions (%)
0-jet 1-jet 2-jets VBF Combined

etµ 0.47 ± 0.42 0.17 ± 0.79 �0.42 ± 1.01 �1.54 ± 0.44 0.18 ± 0.32
eth �0.13 ± 0.39 �0.63 ± 0.40 0.54 ± 0.53 0.70 ± 0.38 0.33 ± 0.24
et 0.30 ± 0.18

  BR h →τµ( ) = 0.25 ± 0.25( )% 13 TeV@CMS CMS’17 



4.6  Discriminating power of τ → µ(e)ππ  decays  

 

 
 
 

 

• Two basic handles:  2)  Spectra in > 2 body decays 

Spin and isospin of the 
hadronic operator leave 
imprint in the spectrum

Celis-VC-Passemar 1403.5781    

   
Leff

D ⊃ −
CD

Λ 2 mτ µσ
µν PL,RτFµν
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• Dipole
Dominant in SUSY-GUT and 

SUSY see-saw scenarios

Rich structure at dim=6

τ
 !τ

µ !µ

Celis, Cirigliano, E.P.’14 
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• Two basic handles:  2)  Spectra in > 2 body decays 

Spin and isospin of the 
hadronic operator leave 
imprint in the spectrum

Celis-VC-Passemar 1403.5781    

   
Leff

D ⊃ −
CD

Λ 2 mτ µσ
µν PL,RτFµν

   
Leff

S ⊃ −
CS

Λ 2 mτ mqGFµPL,Rτ  qq
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• Two basic handles:  2)  Spectra in > 2 body decays 
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• Two basic handles:  2)  Spectra in > 2 body decays 

Spin and isospin of the 
hadronic operator leave 
imprint in the spectrum

Celis-VC-Passemar 1403.5781    

Different distributions according  
to the operator! 

   
Leff

D ⊃ −
CD

Λ 2 mτ µσ
µν PL,RτFµν

   
Leff

S ⊃ −
CS

Λ 2 mτ mqGFµPL,Rτ  qq

   
Leff

G ⊃ −
CG

Λ 2 mτGFµPL,Rτ  Gµν
a Ga

µν
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5.   Conclusion and Outlook 



Summary 

Emilie Passemar 

•  LFV can probe new physics scales much higher than those directly 
observable at the LHC  

 
•  It is possible to observe signals of new physics via LFV transitions in the 

near future, despite the lack of new physics observed so far at the LHC  
 
 
 

•  Different operators expected at low scales, we need to measure as many 
processes as possible  
        Hadronic decays such as τ → µ(e)ππ  important! 
 

•  Use a combination of dispersive methods and ChPT/Lattice QCD in order 
to determine the relevant hadronic matrix elements in a robust way  

•  Possible extension τ → µ(e)K+K- 
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Summary 
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•  LFV can probe new physics scales much higher than those directly 
observable at the LHC  

 
•  It is possible to observe signals of new physics via LFV transitions in the 

near future, despite the lack of new physics observed so far at the LHC  
 
 
 

•  Different operators expected at low scales, we need to measure as many 
processes as possible  
        Hadronic decays such as τ → µ(e)ππ  important! 
 

•  Possible extension τ → µ(e)K+K-
�

•  Interplay low energy and collider physics: LFV of the Higgs boson 
 
 

•  Complementarity with LFC sector: EDMs, g-2 and colliders: 
          New physics models usually strongly correlate these sectors   
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6.   Back-up 



T matrix parametrization 

where Tmn represent the T matrix elements which describe the scattering among the relevant

channels (n = ⇡⇡,KK̄ with ` = 0 and I = 0). The general solution to the condition (14) that

does not grow faster than a power of s at infinity can be written as [71, 74]:

 

F⇡(s)
2p
3
FK(s)

!

=

 

C1(s) D1(s)

C2(s) D2(s)

! 

PF (s)

QF (s)

!

, (15)

where PF (s) and QF (s) are polynomials and the “canonical” solutions Cn(s), Dn(s) generalize

the Omnès factor appearing in the solution of the one-channel unitarity condition [75].

Provided that the S-matrix satisfies certain asymptotic conditions at large s (namely that

S12 ! 0 and Arg(det(S)) ! 4⇡), the solutions Cn(s) and Dn(s), generically denoted by Xn(s)

behave as 1/s for |s| ! 1. Therefore, the Xn(s) satisfy unsubtracted dispersion relations,

which combined with the unitarity condition (14) lead to a set of coupled Muskhelishvili-Omnès

singular integral equations [74, 75]

Xn(s) =
2
X

m=1

1

⇡

Z 1

4M2
⇡

dt

t� s
T ⇤
nm(t)�m(t)Xm(t) , X(s) = C(s), D(s) . (16)

So in order to find a solution to the MO problem described above, we need to specify an

appropriate T matrix. The T matrix is related to the S matrix by

Smn = �mn + 2i
p
�m�n Tmn , (17)

where the kinematical factor �m(s) represents the velocity of the two particles in the centre-of-

mass frame defined in Eq. (10) with �1(s) = �⇡(s) and �2(s) = �K(s). In turn, the ` = 0, I = 0

projection of the S matrix is parameterized as follows

S =

 

cos� e2i�⇡ i sin� ei(�⇡+�K)

i sin� ei(�⇡+�K) cos� e2i�K

!

, (18)

and therefore we need three input functions, the inelasticity ⌘00 ⌘ cos �, the ⇡⇡ S-wave phase

shift �⇡(s) and the KK̄ phase shift �K(s). Up to some energy, these inputs are determined by

solving the Roy-Steiner equations for ⇡⇡ [64, 65, 76, 77] and K⇡ scattering [78]. Since Eq. (14)

is a reasonable approximation to the exact discontinuity only in the energy region below some

cut scut . m2
⌧ , we use the following strategy: for s < scut we use the inputs for the two phase

shifts �⇡(s) and �K(s) and the inelasticity ⌘00(s) coming from a recent update of the solutions of

Roy-Steiner equations [78] 3 provided by B. Moussallam. For s > scut, we drive the T matrix to

zero consistently with unitarity, by forcing the three input functions to the asymptotic values

�⇡ = 2⇡, �K = 0, ⌘00 = 1, which ensure that the canonical solutions to the MO problem fall o↵

as 1/s [71,72,79]. We have varied scut in the range (1.4 GeV)2 � (1.8 GeV)2, and find that the

form factors are insensitive to scut for
p
s < 1.4 GeV.

3The input values M⇡ = 139.57018 MeV and MK = 495.7 MeV have been used to generate these inputs.
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Figure 4: The form factors �⇡(s), �⇡(s) and ✓⇡(s) defined in Eq. (4) as determined by solving the

two-channel unitarity condition and then by matching to ChPT , see text for details. The black solid line

represents their real part and the red dashed-dotted red line stands for their imaginary part. This plot is

generated using scut = (1.4GeV)2 and central values for the matching coe�cients.

for LFV Higgs decays at the LHC. The phenomenology of a CP-odd Higgs boson with LFV

couplings is discussed with a similar spirit. A general two-Higgs-doublet model is introduced to

motivate the discussion of LFV e↵ects in the scalar sector, however all the results in this section

are expressed using the Lagrangian in Eq. (1) and can therefore be interpreted within other new

physics scenarios.

4.1 2HDM and beyond

Two-Higgs-doublet models (2HDM) provide a specific gauge-invariant framework where lepton

flavor violating e↵ects encoded in Eq. (1) can occur, due to both CP-even and CP-odd Higgs

bosons at tree-level. In the Higgs basis, where only one scalar doublet acquires a vev, one can
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•  Knowing the discontinuity of X(s)         write a dispersion relation for it 
 

•  Analyticity of the FFs: X(z) is 
–  real for z < sth 
–  has a branch cut for z > sth 

–  analytic for complex z 
 

•  Cauchy Theorem and Schwarz reflection principle: 
 

 
 

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

Emilie Passemar 47 

Canonical solution                      :   X (s) = C(s), D(s)

24ths mπ≡

   
X (s) = 1

π
dz X (z)

z − sC!∫

Re(z)

  Im(z)

 Λ
2

 C

= 1
2iπ

dz
disc F (z)⎡⎣ ⎤⎦
z − s − iεsth=4Mπ

2

Λ2

∫ + 1
2iπ

dz F (z)
z − sz =Λ2∫

  
X (s) = 1

π
dz

Im X (z)⎡⎣ ⎤⎦
z − s − iε

4 Mπ
2

∞

∫
Λ→ ∞ X(s) can be reconstructed  

everywhere from the  
knowledge of ImX(s) 
 



 
•  General solution to Mushkhelishvili-Omnès problem: 

 
 

•  Canonical solution found by solving the dispersive integral equations iteratively 
starting with Omnès functions 
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Polynomial determined from a  
matching to ChPT + lattice 

Canonical solution falling as 1/s  
for large s (obey unsubtracted  
dispersion relations)  
 

  X (s) = C(s), D(s)
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3.4  Dispersion relations 



 
•  Fix the polynomial with requiring                        + ChPT:  

•  Feynman-Hellmann theorem:  

 
 
•  At LO in ChPT:  
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Determination of the polynomial 

FP (s)→ 1 / s

Brodsky & Lepage’80 



 
•  Fix the polynomial with requiring                        + ChPT:  

•  Feynman-Hellmann theorem:  

 
 
•  At LO in ChPT:  
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Determination of the polynomial 

FP (s)→ 1 / s

Brodsky & Lepage’80 



•  At LO in ChPT:  
 

 
 

•  For the scalar FFs: 

 
 
 

•  Problem: large corrections in the case of the kaons! 
 Use lattice QCD to determine the SU(3) LECs  
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Determination of the polynomial 

Bernard, Descotes-Genon, Toucas’12 
Daub, Dreiner, Hanart, Kubis, Meissner’13 



•  For θP enforcing the asymptotic constraint is not consistent with ChPT 
The unsubtracted DR is not saturated by the 2 states 

 

 Relax the constraints and match to ChPT 
 
 
 
 
 
 
 

             with  
  
      
•  At LO ChPT:   

•  Higher orders                
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Determination of the polynomial 

!f = df
ds

⎛
⎝⎜

⎞
⎠⎟ s=0

   
!θπ ,K = 1

Emilie Passemar 

!θK = 1.15 ± 0.1



•  Contribution from dipole diagrams 
 

 
 
 

 
 

 
•      

 
 

 

     with the vector form factor :  
 
 
•   

 
 
 

•  Diagram only there in the case of                          absent for 
        neutral mode more model independent    

. .eff L L R Rc Q c Q h cγ γ= + +L

with the dim-5 EM penguin operators : 
 
 ( ), ,28L R L R

eQ m P Fαβ
γ γ τ αβµσ τ

π
=

τ µ π π− − + −→ 0 0τ µ π π− −→

( ),L R YC f τµ=

Emilie Passemar 

3.1  Constraints from τ     µππ 
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Determination of FV(s) 

•  Vector form factor 
 

Ø  Precisely known from experimental measurements 
 
 
 

 
Ø  Theoretically: Dispersive parametrization for FV(s) 

 
 
 
 
 
 

Ø  Subtraction polynomial + phase determined from a fit to the                        
Belle data  
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e e π π+ − + −→ and                          (isospin rotation) 0
ττ π π ν− −→

FV (s) = exp λV
' s
mπ
2 +
1
2
λV
'' − λV

'2( ) s
mπ
2

"

#
$$

%

&
''

2

+
s3

π
ds'
s'3

φV (s')
s'− s − iε( )4mπ

2

∞

∫
*

+

,
,

-

.

/
/

Extracted from a model including  
3 resonances ρ(770), ρ’(1465)   
and ρ’’(1700)  fitted to the data  
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Guerrero, Pich’98,  Pich, Portolés’08 
  Gomez, Roig’13 

0
ττ π π ν− −→



Determination of FV(s)
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Determination of FV(s) thanks to precise measurements from Belle! 
 
 

 

ρ(770) 

ρ’(1465) 

ρ’’(1700)  
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4.6  What if τ → µ(e)ππ  is observed? 

•   τ → µ(e)ππ   sensitive to Yµτ hh

Talk by J. Zupan 
@ KEK-FF2014FALL 
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4.6  What if τ → µ(e)ππ  is observed? 

•   τ → µ(e)ππ   sensitive to Yµτ   �
but also to Yu,d,s!

 

hh

Talk by J. Zupan 
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KEK-FF2014FALL, Oct 29 2014, TsukubaJ. Zupan   CP and flavor violation in Higgs…

• hadronic tau decays τ→"&+&-,τ→"&0&0
$

• sensitive to both Yτ","τ and 
 light quark yukawas Yu,d,s!

• Yu,d,s poorly bounded ~O(Yb)$
• for Yu,d,s at their SM values then  
 
 

• for Yu,d,s at their present upper bounds  
 
 

• Br(τ→"&+&-) below present exp. limit, if discovered  
 would (among other things) imply upper limit on Yu,d$

• similarly pseudoscalar Higgses can be bounded from τ→"&(η,η’), τ→e&(η,η’)$

• can saturate present experimental limits

τ→"##

13

reinterpreting Celis, Cirigliano, Passemar, 1309.3564;!
see also Petrov, Zhuridov, 1308.6561 !

Br(⌧ ! e⇡+⇡�) < 4.3⇥ 10�7, Br(⌧ ! e⇡0⇡0) < 2.1⇥ 10�7

Br(⌧ ! e⇡+⇡�) < 2.3⇥ 10�10, Br(⌧ ! e⇡0⇡0) < 6.9⇥ 10�11

Br(⌧ ! µ⇡+⇡�) < 1.6⇥ 10�11, Br(⌧ ! µ⇡0⇡0) < 4.6⇥ 10�12

Br(⌧ ! µ⇡+⇡�) < 3.0⇥ 10�8, Br(⌧ ! µ⇡0⇡0) < 1.5⇥ 10�8
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•  For Yu,d,s  at their SM values : 

 
 
 

•  But for Yu,d,s  at their upper bound: 
 
 
 
below present experimental limits! 

 
 

•  If discovered          upper limit on Yu,d,s!   �
Interplay between high-energy and low-energy constraints! 
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3.3  Handles 

•  Two handles:  

!  Branching ratios:                                with FM dominant LFV mode for  
 
model M 

!  Spectra for > 2 bodies in the final state: 

                                    and  
 
 

 
•  Benchmarks:  

!  Dipole model: CD ≠ 0, Celse= 0 

 

!  Scalar model: CS ≠ 0, Celse= 0 

!  Vector (gamma, Z) model: CV ≠ 0, Celse= 0 
 

!   Gluonic model: CGG ≠ 0, Celse= 0 

 

 
 
 

 

  
RF ,M ≡

Γ τ → F( )
Γ τ → FM( )

  
dR

π +π − ≡
1

Γ τ → µγ( )
dΓ τ → µπ +π −( )

d s 

dBR τ → µπ +π −( )
d s
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3.3  Branching ratios 

•  Two handles:  
!  Branching ratios:                              with FM dominant LFV mode for model M 

 
 
 
 

•  ρ (770) resonance (JPC=1--): cut in the π+π� invariant mass: 

•  �0 (980) resonance (JPC=0++): cut in the π+π� invariant mass: 
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RF ,M ≡

Γ τ → F( )
Γ τ → FM( )

  587 MeV ≤ s ≤ 962 MeV

  906 MeV ≤ s ≤ 1065 MeV
55 Emilie Passemar 



• Two basic handles:  1)  Pattern of BRs

Dominant LFV decay 
mode for model “M”

Illustrative
benchmark 

model

Celis-VC-Passemar 1403.5781    

3.3  Branching ratios 

•  Two handles:  
!  Branching ratios:                              with FM dominant LFV mode for model M 

 
 
 

 

Benchmark 

  
RF ,M ≡

Γ τ → F( )
Γ τ → FM( )

• Two basic handles:  1)  Pattern of BRs

Dominant LFV decay 
mode for model “M”

Celis-VC-Passemar 1403.5781    

μ μ

μτμτ

q q

μτ

Illustrative
benchmark 

model

• Two basic handles:  1)  Pattern of BRs

Dominant LFV decay 
mode for model “M”

Celis-VC-Passemar 1403.5781    

μ μ

μτμτ

q q

μτ

Illustrative
benchmark 

model

• Two basic handles:  1)  Pattern of BRs

Dominant LFV decay 
mode for model “M”

Celis-VC-Passemar 1403.5781    

μ μ

μτμτ

q q

μτ

Illustrative
benchmark 

model

56 



•  Tree level Higgs exchange 
!  η, η’ 

 
 

     with the decay constants : 
 
 
 

 
    
 
 
 

 

! π : 
 

 

4.1  Constraints from τ          lP 
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FIG. 3. Correlation between B(h ! ⌧µ) and B(⌧ ! µ�) in various NP scenarios. The present experimental

result for B(h ! ⌧µ) is shown in horizontal blue band [3]. Current and future projections for B(⌧ ! µ�)

experimental sensitivity are represented with vertical light [24] and dark [25] gray bands, respectively.

Superimposed are the predictions within the EFT approach (diagonal dashed orange line), in the type-III

THDM (green and black bands), in models with vector-like leptons (diagonal dotted purple line) and in

models with scalar leptoquarks (diagonal red and orange shaded band). See text for details.

G` ⌘ SU(3)L ⇥ SU(3)E 2 GF . In the SM (without neutrino masses), the charged lepton Yukawa

matrix � ⇠ (3, ¯3) is the only source of G` breaking. Consequently all lepton interactions are

flavor conserving in the charged lepton mass basis. Conversely, as also demonstrated explicitly

in Eq. (8), the generation of lepton flavor violating Higgs interactions requires at least two non-

aligned sources of lepton flavor symmetry breaking. At the tree level, there are only two possi-

bilities: (1) one can enlarge the SM scalar sector, such that more than one Higgs doublet couples

to the leptons (corresponding to the first term in Eq. (8)); (2) one can extend the leptonic sector

by vector-like fermions, whose Dirac masses and mixing terms with SM chiral fields can pro-

vide additional sources of G` breaking. This leads to the appearance of the �0 contributions after

integrating out the new heavy fermionic states. Both possibilities are explored in the following

sections. Example of an enlarged Higgs sector is given in Sec. III whereas the vector-like fermion

case is discussed in Sec. IV.
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4.5  Interplay between LHC & Low Energy 

Jefferson Lab, Mar 2 2015J. Zupan   Rare Higgs Decays

new physics 
interpretation

• if real, what type of NP?

• if h→τ! due to 1-loop correction

• extra charged particles necessary

• τ→!γ typically too large

• h→τ! possible to explain if extra scalar doublet

• 2HDM of type III

• slightly above Cheng-Sher naturalness 
criterion

19

τ

!

h

Dorsner et al, 1502.07784

Dorsner et al.’15 
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•  If	real	what	type	of	NP?	

•  If	h	→	τ	μ		due	to	loop		
correc>ons:	
–  extra	charged	par>cles		

necessary	

–  τ	→	μγ		too	large	
 
 
 
 
 
 
 
 
 
 
 
 

 
•  h	→	τ	μ		possible	to	explain		

if	extra	scalar	doublet:								 
       2HDM	of	type	III	

•  Constraints	from	τ	→	μγ	important!										Belle II  
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•  2HDMs	with	gauged	Lμ	–	Lτ		
								Z’,	explain	anomalies	for	
–  h → τ µ

–  B  → K*µµ

–  RK = B  → Kµµ / B  → Kee

•  Constraints	from	τ  → 3µ  �
crucial									Belle	II,	LHCb	

•  See	also:		
Aris?zabal-Sierra	&	Vicente’14,		
Lima	et	al’15,		
Omhura,	Senaha,	Tobe	’15	

	Altmannshofer	&	Straub’14,	Crivellin	et	al’15	
Crivellin,	D’Ambrosio,	Heeck.’15	
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FIG. 6: Allowed regions in the mZ0/g0–sin(✓R) plane for a =
1/3: the horizontal stripes correspond to h ! µ⌧ (1�) for
tan�23 = 70, 40 and cos(↵23 � �23) = 0.25, and (light) blue
stands for (future) ⌧ ! 3µ limits at 90% C.L. The gray regions
are excluded by the 2� range for Cµµ

9 (see Eq. (56)). In this
range, ATLAS limits constrain mZ0 & 2.5TeV (see Fig. 4).

which has to be compared to the current upper limit of
1.2⇥10�8 at 90% C.L. which is obtained from combining
data from Belle and BaBar [94]. This limit can most
likely be improved by an order of magnitude to 10�9 in
the future [95].

In the previous sections, we have seen that a resolution
of the B-meson anomalies – indicated through a non-zero
C9 (Eq. (56)) – requires mZ0/g0 to be in the TeV range
(Fig. 5). In Fig. 6 we show the exclusion limits from
⌧ ! 3µ together with the preferred region for h ! µ⌧
and the C9 constraints on mZ0/g0. The important part
is the upper limit on mZ0/g0 from C9. With a non-zero
value for ✓R required by h ! µ⌧ , we can then predict a
rate for ⌧ ! 3µ mediated by the Z 0. For this we express
mZ0/g0 in terms of C9 and ✓R in Br[h ! µ⌧ ] to arrive at

Br [⌧ ! 3µ] ' 4.6⇥ 10�5C
2
9 cos

2 �23 sin
2 �23

a2 cos2(↵23 � �23)
Br[h ! µ⌧ ] .

(88)

We remind the reader that the angles ↵23 and �23 do
not correspond to the 2HDM angles from Sec. II but to
those from Refs. [32, 33]. Using the 2� lower limits on
C9 (Eq. (56)) and h ! µ⌧ (Eq. (2)), as well as the LHC
constraint | cos(↵23 � �23)|  0.4 [74, 75], we can predict

Br [⌧ ! 3µ] & 9.3⇥ 10�9

✓
10

tan�23

◆2

, (89)

working in the large tan�23 limit and setting a = 1/3.
The current bound is then tan�23 & 9, while the future

reach goes above tan�23 ⇠ 30. Using the 1� limits for C9

and h ! µ⌧ gives a current (future) bound of 30 (104)
on tan�23. This is much stronger than the prediction
of Ref. [33] in a model with vector-like quarks, where
1� limits only implied a future reach up to tan� ⇠ 60
(using the updated value for h ! µ⌧ from Eq. (2)). The
3HDM with gauged horizontal U(1)0 charges studied here
is hence more tightly constrained than the 2HDM with
vector-like quarks [33].

Equation (89) is the main prediction of the simultane-
ous explanation of the B-meson anomalies in connection
with h ! µ⌧ . Note that in addition to the mZ0/g0 limits
from C9, ATLAS constrains mZ0 vs. g0 (Fig. 4). For the
parameters in Fig. 6, this imposes the additional bound
mZ0 & 2.5TeV (or g0 & 0.65), which puts the U(1)0 Lan-
dau pole below roughly 3⇥ 1012 GeV for a = 1/3.

V. CONCLUSIONS AND OUTLOOK

In this paper we proposed a model with multiple
scalar doublets and a horizontal U(1)0 gauge symmetry
in which all three LHC anomalies in the flavour sector
(B ! K⇤µ+µ�, R(K) and h ! µ⌧) can be explained
simultaneously. Compared to previous explanations, our
model does not require vector-like quarks charged un-
der the new gauge group. The spontaneously broken
anomaly-free U(1)0 gauge symmetry is generated by

Q0 = (Lµ � L⌧ )� a(B1 +B2 � 2B3) , a 2 Q , (90)

which leads to successful fermion-mixing patterns. In
particular, it generates a large (small) atmospheric (re-
actor) mixing angle in the lepton sector and explains the
almost decoupled third quark generation. The univer-
sal charges the quarks of the first two generations allow
for the generation of the Cabibbo angle without danger-
ously large e↵ects in Kaon mixing, and the neutralness of
electrons under the U(1)0 symmetry softens constraints
without fine-tuning.

The observed quark mixing of the CKM matrix re-
quires the U(1)0 to be broken with a second scalar doublet
with U(1)0 charge �a, which leads to flavour-violating
couplings of the Z 0 and of the scalars, giving simulta-
neously a natural explanation for the smallness of Vub

and Vcb. Scalar contributions to Bs–B̄s mixing typi-
cally require ↵ � � ' ⇡/2, which is, however, relaxed
for mA < mH . The anomalies in B ! K⇤µ+µ� and
R(K) can be explained with a TeV-scale Z 0 boson and
a < 1 while satisfying Bs–B̄s-mixing constraints and lim-
its from direct Z 0 searches at the LHC. Future LHC and
FCC (Future Circular Collider) searches are very inter-
esting for our model as they might strengthen the current
limits or lead to the discovery of the Z 0 boson.

Introducing a third scalar doublet, with U(1)0 charge
�2, gives rise to the decay h ! µ⌧ in complete analogy to
Refs. [32, 33]. Together with the large Z 0 e↵ect necessary
to resolve B ! K⇤µ+µ� and R(K), the decay h ! µ⌧
then allows us to predict a rate for ⌧ ! 3µ, depending
on tan� and cos(↵��), potentially measurable in future
experiments.


