Jan 23th, 2019

CP-violation in and beyond the SM

Christopher Smith

- Outline
 - I. CP-violation in the SM
 - II. CP-violation beyond the SM
 - III. Perspective and Conclusion

I. CP-violation in the SM

A. CP-violating sources in the SM

In the SM, two types of phases survive to all field redefinitions:

Three CPV terms are present in the SM gauge Lagrangian:

$$\mathcal{L}_{\mathcal{C}\mathcal{P}} = \Theta_C \frac{\alpha_s}{8\pi} G_{\mu\nu} \tilde{G}^{\mu\nu} + \Theta_L \frac{g^2}{16\pi^2} W_{\mu\nu} \tilde{W}^{\mu\nu} + \Theta_Y \frac{g'^2}{16\pi^2} B_{\mu\nu} \tilde{B}^{\mu\nu}$$

Three CPV terms are present in the SM gauge Lagrangian:

$$\mathcal{L}_{\mathcal{CP}} = \Theta_C \frac{\alpha_s}{8\pi} G_{\mu\nu} \tilde{G}^{\mu\nu} + \Theta_L \frac{g^2}{16\pi^2} W_{\mu\nu} \tilde{W}^{\mu\nu} + \Theta_Y \frac{g'^2}{16\pi^2} B_{\mu\nu} \tilde{B}^{\mu\nu}$$

When massless, the quarks/leptons have identical gauge interactions

→ flavor symmetry: $G_F = U(3)^5 = U(3)_Q \times U(3)_U \times U(3)_D \times U(3)_L \times U(3)_E$

Example:

$$U_{R}^{I} = \begin{pmatrix} u_{R} \\ c_{R} \\ t_{R} \end{pmatrix} \rightarrow U_{R}^{\prime I} = \begin{pmatrix} u_{R}^{\prime} \\ c_{R}^{\prime} \\ t_{R}^{\prime} \end{pmatrix} = (g_{U})^{IJ} U_{R}^{J} , g_{U}^{\dagger} g_{U} = 1:$$

$$\mathcal{L}_{Kin} = \sum_{I=1,2,3} \overline{U}_R^I \, i \mathbb{D} U_R^I \to \sum_{k,I,J,K} \overline{U}_R^J \, (g_U^\dagger)^{JI} \, i \mathbb{D} (g_U)^{IK} \, U_R^K = \mathcal{L}_{Kin}$$

Three CPV terms are present in the SM gauge Lagrangian:

$$\mathcal{L}_{\mathcal{CP}} = \Theta_C \frac{\alpha_s}{8\pi} G_{\mu\nu} \tilde{G}^{\mu\nu} + \Theta_L \frac{g^2}{16\pi^2} W_{\mu\nu} \tilde{W}^{\mu\nu} + \Theta_Y \frac{g'^2}{16\pi^2} B_{\mu\nu} \tilde{B}^{\mu\nu}$$

When massless, the quarks/leptons have identical gauge interactions \rightarrow flavor symmetry: $G_F = U(3)^5 = U(3)_Q \times U(3)_U \times U(3)_D \times U(3)_L \times U(3)_E$

These U(1)s are chiral hence anomalous:

$$\begin{pmatrix} \partial_{\mu} J_{Q}^{\mu} \\ \partial_{\mu} J_{U}^{\mu} \\ \partial_{\mu} J_{D}^{\mu} \\ \partial_{\mu} J_{L}^{\mu} \\ \partial_{\mu} J_{E}^{\mu} \end{pmatrix} = -\frac{N_{f}}{16\pi^{2}} \begin{pmatrix} 1 & 3/2 & 1/6 \\ 1/2 & 0 & 4/3 \\ 1/2 & 0 & 1/3 \\ 0 & 1/2 & 1/2 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} g_{s}^{2} G_{\mu\nu} \tilde{G}^{\mu\nu} \\ g^{2} W_{\mu\nu} \tilde{W}^{\mu\nu} \\ g'^{2} B_{\mu\nu} \tilde{B}^{\mu\nu} \end{pmatrix}$$

Three CPV terms are present in the SM gauge Lagrangian:

$$\mathcal{L}_{\mathcal{CP}} = \Theta_C \frac{\alpha_S}{8\pi} G_{\mu\nu} \tilde{G}^{\mu\nu} + \Theta_L \frac{g^2}{16\pi^2} W_{\mu\nu} \tilde{W}^{\mu\nu} + \Theta_Y \frac{g'^2}{16\pi^2} B_{\mu\nu} \tilde{B}^{\mu\nu}$$

When massless, the quarks/leptons have identical gauge interactions \rightarrow flavor symmetry: $G_F = U(3)^5 = U(3)_Q \times U(3)_U \times U(3)_D \times U(3)_L \times U(3)_E$

These U(1)s are chiral hence anomalous:

$$\begin{pmatrix} \partial_{\mu} J_{Y}^{\mu} \\ \partial_{\mu} J_{B}^{\mu} \\ \partial_{\mu} J_{L}^{\mu} \\ \partial_{\mu} J_{PQ}^{\mu} \\ \partial_{\mu} J_{E}^{\mu} \end{pmatrix} = -\frac{N_{f}}{16\pi^{2}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1/2 & -1/2 \\ 0 & 1/2 & -1/2 \\ 1 & 0 & 8/3 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} g_{s}^{2} G_{\mu\nu} \tilde{G}^{\mu\nu} \\ g^{2} W_{\mu\nu} \tilde{W}^{\mu\nu} \\ g'^{2} B_{\mu\nu} \tilde{B}^{\mu\nu} \end{pmatrix}$$

 $U(1)_{B-L}$ and $U(1)_Y$ are anomaly-free.

Three CPV terms are present in the SM gauge Lagrangian:

$$\mathcal{L}_{\mathcal{CP}} = \Theta_C \frac{\alpha_s}{8\pi} G_{\mu\nu} \tilde{G}^{\mu\nu} + \Theta_L \frac{g^2}{16\pi^2} W_{\mu\nu} \tilde{W}^{\mu\nu} + \Theta_Y \frac{g'^2}{16\pi^2} B_{\mu\nu} \tilde{B}^{\mu\nu}$$

When massless, the quarks/leptons have identical gauge interactions \rightarrow flavor symmetry: $G_F = U(3)^5 = U(3)_Q \times U(3)_U \times U(3)_D \times U(3)_L \times U(3)_E$

These U(1)s are chiral hence anomalous.

With the appropriate rotations, all three CPV terms are eliminated:

$$\begin{aligned} \theta_{C} &\to \theta_{C} - N_{f} (2\alpha_{Q} + \alpha_{U} + \alpha_{D}) \\ \theta_{L} &\to \theta_{L} - N_{f} (3\alpha_{Q} + \alpha_{L}) \\ \theta_{Y} &\to \theta_{Y} - N_{f} (1/3\alpha_{Q} + 8/3\alpha_{U} + 2/3\alpha_{D} + \alpha_{L} + 2\alpha_{E}) \end{aligned}$$

Three CPV terms are present in the SM gauge Lagrangian:

$$\mathcal{L}_{\mathcal{CP}} = \Theta_C \frac{\alpha_S}{8\pi} G_{\mu\nu} \tilde{G}^{\mu\nu} + \Theta_L \frac{g^2}{16\pi^2} W_{\mu\nu} \tilde{W}^{\mu\nu} + \Theta_Y \frac{g'^2}{16\pi^2} B_{\mu\nu} \tilde{B}^{\mu\nu}$$

When massive, the $U(3)^5$ symmetry is broken by the Yukawa couplings.

We must require the quark/lepton masses to be real! = Three U(1) are fixed to get to $vY_u = m_u V_{CKM}$, $vY_{d,e} = m_{d,e}$.

Not enough freedom remains to get rid of all three CPV interactions:

$$\begin{aligned} \theta_C &\to \theta_C - \arg \det \mathbf{Y}_u - \arg \det \mathbf{Y}_d \\ \theta_L &\to \theta_L - N_f \left(3\alpha_Q + \alpha_L \right) \\ \theta_Y &\to \theta_Y + N_f \left(3\alpha_Q + \alpha_L \right) - \frac{8}{3} \arg \det \mathbf{Y}_u - \frac{2}{3} \arg \det \mathbf{Y}_d - 2 \arg \det \mathbf{Y}_e \end{aligned}$$

Three CPV terms are present in the SM gauge Lagrangian:

Not enough freedom remains to get rid of all three CPV interactions:

$$\begin{aligned} \theta_C &\to \theta_C - \arg \det \mathbf{Y}_u - \arg \det \mathbf{Y}_d \\ \theta_L &\to \theta_L - N_f \left(3\alpha_Q + \alpha_L \right) \\ \theta_Y &\to \theta_Y + N_f \left(3\alpha_Q + \alpha_L \right) - \frac{8}{3} \arg \det \mathbf{Y}_u - \frac{2}{3} \arg \det \mathbf{Y}_d - 2 \arg \det \mathbf{Y}_e \end{aligned}$$

Why is this strong CP-violation term so puzzling?

CPV in the SM 5/9

B. Flavor-blind phases in the SM

Why is this strong CP-violation term so puzzling?

Why is this strong CP-violation term so puzzling?

Neutron EDM implies $\theta_{eff} \equiv \theta_C - \arg \det Y_u - \arg \det Y_d < 10^{-10}$!!!

The unique flavor-blind phase of the SM is very problematic!

C. Flavored phases in the SM

The U(3) symmetry of the gauge sector permits to rotate to:

$$\mathcal{L} = -UY_uQH - DY_dQH^C - EY_eLH^C \text{ with } vY_u = m_uV_{CKM}, vY_{d,e} = m_{d,e}$$

CP-violation hidden in the CKM matrix \rightarrow Flavor transitions

$$\begin{array}{cccc}
 & \mathcal{W} & \mathcal{V}_{CKM}^{IJ} \\
 & \mathcal{V}_{CKM}^{IJ} &= \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\
 V_{cd} & V_{cs} & V_{cb} \\
 V_{td} & V_{ts} & V_{tb} \end{pmatrix} \approx \begin{pmatrix} 1 & 10^{-1} & 10^{-3} \\
 10^{-1} & 1 & 10^{-2} \\
 10^{-3} & 10^{-2} & 1 \end{pmatrix} + \mathcal{O}(10^{-4})$$

Interplay with FCNC, both CPV and CPC

Loop-level only GIM suppressed

C. Flavored phases in the SM

In the SM, flavored phases are rather peculiar, but experiment agrees!

D. From flavored to flavorless phases in the SM

Smith, Touati, '17

CKM-induced lepton EDM

 $\propto \det \left[Y_{u}^{\dagger} Y_{u}, Y_{d}^{\dagger} Y_{d} \right] \sim 10^{-22}$

CKM-induced quark EDM

$$\propto \operatorname{Im}\left[\mathbf{Y}_{u}^{\dagger}\mathbf{Y}_{u}, \mathbf{Y}_{u}^{\dagger}\mathbf{Y}_{u}\mathbf{Y}_{d}^{\dagger}\mathbf{Y}_{d}\mathbf{Y}_{d}^{\dagger}\mathbf{Y}_{u}\mathbf{Y}_{u}\right]^{dd} \sim 10^{-12}$$
$$\propto \operatorname{Im}(V_{us}V_{cb}V_{ub}^{*}V_{cs}^{*})$$

The induced EDMs are way beyond experimental reach.

The SM dynamics effectively shields strong CPV from weak CPV.

D. From flavored to flavorless phases in the SM

0000

CKM-induced strong phase:

 $\Delta \theta_{e\!f\!f} \approx O(10^{-16})$

Imaginary part of the vacuum polarization (shifts $G_{\mu\nu} {\tilde G}^{\mu\nu}$)

Imaginary contributions to quark masses

(shifts $\arg \det Y_{u,d}$)

D. From flavored to flavorless phases in the SM

CKM-induced strong phase:

Wilczek, '78 Ellis, Gaillard, '79 Khriplovich, Vainshtein, '93

$$\Delta \theta_{eff} \approx O(10^{-16})$$

×12 a_L W UV divergent!

 θ_{eff} is a physical free parameter If $\theta_{eff} (M_{GUT}) \equiv 0 \Rightarrow \theta_{eff} (M_W) \approx O(10^{-18})$

$$\mathcal{L}_{axion} = -\frac{1}{4}G_{\mu\nu}G^{\mu\nu} - \frac{3g^2}{32\pi^2}\theta_{S}G_{\mu\nu}\tilde{G}^{\mu\nu} + \bar{\psi}_{L,R}i\mathcal{D}\psi_{L,R} + y_i\bar{\psi}_L\psi_RH_i + V(H_i)$$

Step 1:Invariant under some global U(1) symmetry.Spontaneously broken by the Higgses VEVs.One massless goldstone boson, $\langle 0|J^{\mu}|a(p)\rangle = ivp^{\mu}$.

$$\mathcal{L}_{axion} = -\frac{1}{4}G_{\mu\nu}G^{\mu\nu} - \frac{3g^2}{32\pi^2}\theta_{S}G_{\mu\nu}\tilde{G}^{\mu\nu} + \bar{\psi}_{L,R}i\mathcal{D}\psi_{L,R} + y_i\bar{\psi}_{L}\psi_{R}H_i + V(H_i)$$

- Step 1:Invariant under some global U(1) symmetry.Spontaneously broken by the Higgses VEVs.One massless goldstone boson, $\langle 0|J^{\mu}|a(p)\rangle = ivp^{\mu}$.
- Step 2:Design \mathcal{L}_{axion} such that $Q(\psi_L) \neq Q(\psi_R)$ This makes the symmetry anomalous: $\partial_{\mu}J^{\mu} \sim G_{\mu\nu}\tilde{G}^{\mu\nu}$ Net effect: $\mathcal{L}_{axion} = \mathcal{L}_{QCD} + \frac{1}{\nu}aG_{\mu\nu}\tilde{G}^{\mu\nu} + \dots$

$$\mathcal{L}_{axion} = -\frac{1}{4}G_{\mu\nu}G^{\mu\nu} - \frac{3g^2}{32\pi^2}\theta_{S}G_{\mu\nu}\tilde{G}^{\mu\nu} + \bar{\psi}_{L,R}i\mathcal{D}\psi_{L,R} + y_i\bar{\psi}_{L}\psi_{R}H_i + V(H_i)$$

- Step 1:Invariant under some global U(1) symmetry.Spontaneously broken by the Higgses VEVs.One massless goldstone boson, $\langle 0|J^{\mu}|a(p)\rangle = ivp^{\mu}$.
- Step 2:Design \mathcal{L}_{axion} such that $Q(\psi_L) \neq Q(\psi_R)$ This makes the symmetry anomalous: $\partial_{\mu}J^{\mu} \sim G_{\mu\nu}\tilde{G}^{\mu\nu}$ Net effect: $\mathcal{L}_{axion} = \mathcal{L}_{QCD} + \frac{1}{\nu}aG_{\mu\nu}\tilde{G}^{\mu\nu} + \dots$
- Step 3: Non-perturbative QCD effects induce

 $\mathcal{L}_{axion} \to \mathcal{L}_{ChPT}(\partial_{\mu}a, \pi, \eta, \eta', ...) + V_{eff}(\theta_{S} + a / v, \pi, \eta, ...)$ Miminum at $\theta_{S} + \langle a \rangle / v = 0$: Strong CP relaxes to zero!

$$\mathcal{L}_{axion} = -\frac{1}{4}G_{\mu\nu}G^{\mu\nu} - \frac{3g^2}{32\pi^2}\theta_{S}G_{\mu\nu}\tilde{G}^{\mu\nu} + \bar{\psi}_{L,R}i\mathcal{D}\psi_{L,R} + y_i\bar{\psi}_L\psi_RH_i + V(H_i)$$

- Step 1:Invariant under some global U(1) symmetry.Spontaneously broken by the Higgses VEVs.One massless goldstone boson, $\langle 0|J^{\mu}|a(p)\rangle = ivp^{\mu}$.
- Step 2:Design \mathcal{L}_{axion} such that $Q(\psi_L) \neq Q(\psi_R)$ This makes the symmetry anomalous: $\partial_{\mu}J^{\mu} \sim G_{\mu\nu}\tilde{G}^{\mu\nu}$ Net effect: $\mathcal{L}_{axion} = \mathcal{L}_{QCD} + \frac{1}{\nu} a G_{\mu\nu} \tilde{G}^{\mu\nu} + ...$ Cannot be EW-scale!Step 3:Non-perturbative QCD effects induce $\mathcal{L}_{axion} \rightarrow \mathcal{L}_{ChPT}(\partial_{\mu}a, \pi, \eta, \eta', ...) + V_{eff}(\theta_S + a / \nu, \pi, \eta, ...)$ Miminum at $\theta_S + \langle a \rangle / \nu = 0$: Strong CP relaxes to zero!

II. CP-violation beyond the SM

A. CP-violating phases beyond the SM

Still two types of phases, but a lot of each of them!

Lagrangian contains new particles & couplings

In general, number of couplings increases a lot! Many of them are physically complex.

Flavor-blind CP-violation much more problematic than in the SM:

E.g., SUSY CP puzzle from $Arg(\mu,...) \ll 1^{\circ}$.

Flavor-blind CP-violation must be controlled, but axions not enough.

Hierarchy puzzle = Stability of the EW scale:

 \rightarrow New physics must be light.

Flavor puzzles = non-observation of new effects at low energy:

 \rightarrow New physics must be very heavy.

OR

 \rightarrow New physics must have tiny, fine-tuned couplings.

The SM flavor sector is full of «tiny» parameters.

New Physics just needs to be approximately aligned with the SM.

To do this consistently: Use the tools of Minimal Flavor Violation.

Example : The Z penguin in the SM: $\mathcal{O}_Z^{SM} \sim \frac{1}{M_W^2} \times \mathcal{C}^{IJ} \times \bar{\mathcal{Q}}^I \gamma^{\mu} \mathcal{Q}^J H^{\dagger} D_{\mu} H$

$b \rightarrow s$	$b \rightarrow d$	$s \rightarrow d$
0.04	0.008	0.0003

Example : The Z penguin with NP:

$$\mathcal{O}_Z^{NP} \sim \frac{1}{\Lambda^2} \times \mathcal{C}^{IJ} \times \bar{Q}^I \gamma^\mu Q^J H^\dagger D_\mu H$$

$$\mathcal{C}_{SM}^{IJ} \sim (\mathbf{Y}_u^{\dagger} \mathbf{Y}_u)^{IJ} \sim \frac{m_t^2}{v^2} V_{tI}^{\dagger} V_{tJ}$$

$b \rightarrow s$	$b \rightarrow d$	$s \rightarrow d$
0.04	0.008	0.0003

Current bounds on Λ (in TeV):

\mathcal{C}^{IJ}	1	$g^2/4\pi$
$B_s \rightarrow \mu^+ \mu^-$	12	2.2
$B_d \rightarrow \mu^+ \mu^-$	17	3
$K \rightarrow \pi \nu \overline{\nu}$	100	18

Example : The Z penguin with MFV:
$$\mathcal{O}_Z^{NP} \sim \frac{1}{\Lambda^2} \times \mathcal{C}^{IJ} \times \bar{\mathcal{Q}}^I \gamma^{\mu} \mathcal{Q}^J H^{\dagger} D_{\mu} H$$

$$\mathcal{C} = a_0 \mathbf{1} + a_1 \mathbf{Y}_u^{\dagger} \mathbf{Y}_u + a_2 \mathbf{Y}_d^{\dagger} \mathbf{Y}_d + \dots \sim \begin{pmatrix} 1 & 10^{-4} & 10^{-3} \\ 10^{-4} & 1 & 10^{-2} \\ 10^{-3} & 10^{-2} & 1 \end{pmatrix} + i \begin{pmatrix} 0 & 10^{-4} & 10^{-3} \\ 10^{-4} & 0 & 10^{-4} \\ 10^{-3} & 10^{-4} & 0 \end{pmatrix}$$

The pattern of CPC and CPV is similar as in the SM.

Current bounds on Λ (in TeV):

\mathcal{C}^{IJ}	1	$g^2/4\pi$	$V_{tI}^{\dagger}V_{tJ}^{}$	$V_{tI}^{\dagger}V_{tJ} g^2/4\pi$
$B_s \rightarrow \mu^+ \mu^-$	12	2.2	2.5	0.45
$B_d \to \mu^+ \mu^-$	17	3	1.5	0.27
$K \to \pi \nu \overline{\nu}$	100	18	1.8	0.33

Example : The Z penguin with MFV:
$$\mathcal{O}_Z^{NP} \sim \frac{1}{\Lambda^2} \times \mathcal{C}^{IJ} \times \bar{\mathcal{Q}}^I \gamma^{\mu} \mathcal{Q}^J H^{\dagger} D_{\mu} H$$

$$\mathcal{C} = a_0 \mathbf{1} + a_1 \mathbf{Y}_u^{\dagger} \mathbf{Y}_u + a_2 \mathbf{Y}_d^{\dagger} \mathbf{Y}_d + \dots \sim \begin{pmatrix} 1 & 10^{-4} & 10^{-3} \\ 10^{-4} & 1 & 10^{-2} \\ 10^{-3} & 10^{-2} & 1 \end{pmatrix} + i \begin{pmatrix} 0 & 10^{-4} & 10^{-3} \\ 10^{-4} & 0 & 10^{-4} \\ 10^{-3} & 10^{-4} & 0 \end{pmatrix}$$

The pattern of CPC and CPV is similar as in the SM.

EDMs: The
$$\gamma$$
 penguin with MFV: $\mathcal{O}_{\gamma}^{NP} \sim \frac{1}{\Lambda^2} C_{\gamma}^{IJ} (\bar{D}^I \sigma_{\mu\nu} Q^J) H F^{\mu\nu}$

Flavor blind: unconstrained

MFV shields EDMs from flavored phases.

Neutrino masses require some new flavor structures.

Cirigliano, Grinstein Isidori, Wise '05

For example, with a seesaw mechanism:

Main constraint then comes from $\mu \rightarrow e\gamma$:

Once satisfied, difficult to have visible effects elsewhere.

Smith, Touati, '17

C. Flavored CP-violating phases beyond the SM

EDM : What happens with new Majorana structures?

Majorana-induced quark EDM

Majorana-induced lepton EDM

 $\propto \operatorname{Im}\left[\Upsilon_{\nu}^{\dagger}\Upsilon_{e}^{\dagger}\Upsilon_{e}\Upsilon_{\nu}\cdot\Upsilon_{e}^{\dagger}\Upsilon_{e}\cdot\Upsilon_{\nu}^{\dagger}\Upsilon_{\nu}\right] \qquad \qquad \propto \operatorname{Im}\left[\Upsilon_{\nu}^{\dagger}\Upsilon_{\nu},\Upsilon_{\nu}^{\dagger}(\Upsilon_{e}^{\dagger}\Upsilon_{e})^{T}\Upsilon_{\nu}\right]^{ee}$

Flavor-blind CPV not always well-protected against leptonic phases.

Smith, Touati, '17

C. Flavored CP-violating phases beyond the SM

EDM : The simplest invariant in terms of Majorana phases?

$$\mathcal{L}_{majorana} \supset \frac{1}{\Lambda} (LH)^T \Upsilon_{\mathbf{v}} (LH)$$

In analogy with det $\left[Y_{u}^{\dagger}Y_{u}, Y_{d}^{\dagger}Y_{d}\right]$, why not construct:

$$\operatorname{Im} \det \Upsilon_{\nu} \sim \frac{\Lambda^3}{v_{EW}^6} m_{\nu 1} m_{\nu 2} m_{\nu 3} \sin(\alpha_M + \beta_M) \leq O(1)$$

EDM : The simplest invariant in terms of Majorana masses?

$$\mathcal{L}_{majorana} \supset \frac{1}{\Lambda} (LH)^T \Upsilon_{\mathbf{v}} (LH)$$

In analogy with det $\left[Y_{u}^{\dagger}Y_{u}, Y_{d}^{\dagger}Y_{d}\right]$, why not construct:

Im det
$$\Upsilon_{\nu} \sim \frac{\Lambda^3}{v_{EW}^6} m_{\nu 1} m_{\nu 2} m_{\nu 3} \sin(\alpha_M + \beta_M + \gamma_M - \alpha_L) \equiv 0$$

Spurious! Bad choice of phase conventions:
 $(\Theta_L - 3\alpha_Q - \alpha_L) \frac{g^2}{16\pi^2} W_{\mu\nu} \tilde{W}^{\mu\nu}$

Beware though: No freedom remain for α_0 !

Typically, baryon-number violating operators must violate CP.

Smith, Touati, '17

E. Is MFV ruled out by Flavor Universality violation?

Quark and lepton universality appear quite automatic with MFV:

$$\mathcal{C}^{IJ} \times Q^{I} \gamma^{\mu} Q^{J} \times (...) \rightarrow \mathcal{C} = a_0 \mathbf{1} + \underbrace{a_1 \mathbf{Y}_u^{\dagger} \mathbf{Y}_u + a_2 \mathbf{Y}_d^{\dagger} \mathbf{Y}_d + ...}_{<\mathbf{1}}$$

But actually, there is a peculiar point:

Brümmer, Kraml, Kulkarni, CS, `14

$$\mathcal{C}^{IJ} \times Q^{I} \gamma^{\mu} Q^{J} \times (...) \rightarrow \mathcal{C} \sim 1 + \frac{-1}{\langle \mathbf{Y}_{u}^{\dagger} \mathbf{Y}_{u} \rangle} \mathbf{Y}_{u}^{\dagger} \mathbf{Y}_{u} \approx \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Maximal violation of flavor universality!

Natural thanks to the large top Yukawa,

Respects MFV: no problem with FCNC

But is intrinsically fine-tuned!

E. Is MFV ruled out by Flavor Universality violation?

Consider Geometric MFV expansions:

$$C = 1 + \eta Y_u^{\dagger} Y_u + \eta^2 (Y_u^{\dagger} Y_u)^2 + \eta^3 (Y_u^{\dagger} Y_u)^3 + \dots = \frac{1}{1 - \eta Y_u^{\dagger} Y_u}$$

No need to fine-tune η , it just needs to be large enough:

$$\mathcal{C} = \begin{pmatrix} \frac{1}{1 - \eta y_u^2} \approx 1 & \\ & \frac{1}{1 - \eta y_c^2} \approx 1 \\ & & \frac{1}{1 - \eta y_c^2} \approx 0 \end{pmatrix}$$

But $1 + x + x^2 + x^3 + ... \rightarrow 0$ if $x \gg 1$???

E. Is MFV ruled out by Flavor Universality violation?

Consider Geometric MFV expansions:

$$\mathcal{C}^{IJ} \times Q^{I} \gamma^{\mu} Q^{J} \times (...) \to \mathcal{C} = \frac{1}{1 - \eta Y_{u}^{\dagger} Y_{u}} \approx \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Dynamical toy model to resum the series:

1. Add heavy vector-like flavored fermions + Higgs singlet:

E. Is MFV ruled out by Flavor Universality violation?

Consider Geometric MFV expansions:

$$\mathcal{C}^{IJ} \times Q^{I} \gamma^{\mu} Q^{J} \times (...) \to \mathcal{C} = \frac{1}{1 - \eta \mathbf{Y}_{u}^{\dagger} \mathbf{Y}_{u}} \approx \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Dynamical toy model to resum the series:

1. Add heavy vector-like flavored fermions + Higgs singlet:

$$M_X^2 = M_0^2 - M_{SSB}^2 = M_0^2 - v_s^2 \mathbf{Y}_u^{\dagger} \mathbf{Y}_u$$

2. Ensure C is induced by a Fermi-like interaction:

$$\underbrace{Q} \quad X \quad Q = \underbrace{Q} \quad \bigotimes \quad \bigotimes \quad Q \quad Q$$

The large parameter is dynamical: $\eta = v_s^2 / M_0^2$

E. Is MFV ruled out by Flavor Universality violation?

Why could this concern leptons?

Because it is the ONLY way to naturally express Y_e in terms of $Y_{u,d}$:

$$\mathbf{Y}_{e} = c_{0} \mathbf{Y}_{d} \cdot \mathcal{C} \quad \Rightarrow \quad \mathcal{C} \approx \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Can be induced dynamically:

Dressed lepton Yukawa, with $\mathbf{Y}_{e}, \mathbf{Y}_{X}, \mathbf{M}_{X}, \mathbf{N}_{X} = poly(\mathbf{Y}_{u}, \mathbf{Y}_{d})$:

$$\mathbf{Y}_{e}^{eff} = c_0 \mathbf{Y}_d \frac{1}{1 + (v_s / M_X)(c_1 \mathbf{Y}_u^{\dagger} \mathbf{Y}_u + c_2 \mathbf{Y}_d^{\dagger} \mathbf{Y}_d)}$$

E. Is MFV ruled out by Flavor Universality violation?

What about lepton flavor universality then?

Consider the leptonic part of a semi-leptonic operator:

$$\mathcal{Q}^{NP} = \frac{1}{\Lambda^n} \mathcal{C}^{IJ} \times L^I \gamma^\mu L^J \times (\dots) \rightarrow \mathcal{C} \approx \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Very suppressed for the 3rd generation gauge state:

$$\mathbf{Y}_{e} = c_{0} \mathbf{Y}_{d} \cdot \mathcal{C} \quad \Rightarrow \quad \begin{pmatrix} e_{L} \\ \mu_{L} \\ \tau_{L} \end{pmatrix}^{gauge} \approx \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} e_{L} \\ \mu_{L} \\ \tau_{L} \end{pmatrix}^{phys}$$

So we actually expect $Q^{NP}(\mu) \approx Q^{NP}(\tau) \gg Q^{NP}(e)$!

Overall: Accounting for LFUV requires quite some work! But note: adding vector fermions + Higgs singlet is precisely the DFSZ receipt to make the axion invisible!

Perspective & Conclusion

Flavor-blind CP violation & axions

Axions can solve the SM CP-puzzle, but this looks very coincidental

Axions can solve the SM CP-puzzle, but this looks very coincidental

Baryon/lepton number conservation is also very coincidental in the SM

 $U(1)_{PQ}, U(1)_B, U(1)_L =$ anomalous combinations of flavored U(1)s. Note: flavor-blind \neq unflavored!!!

Not trivial to make axion models compatible with BNV / LNV. Watamura & Yoshimura, '82

Axions should have more than one role:

- Flavored/MFV axions?

Ema, Hamaguchi, Moroi, Nakayama, 1612.05492 Calibbi, Goertz, Redigolo, Ziegler, Zupan, 1612.08040 Arias-Aragon, Merlo, 1709.07039 Choi, Im, Park, Yun, 1708.00021 Ema, Hagihara, Hamaguchi, Moroi, Nakayama, 1802.07739 Reig, Valle, Wilczek, 1805.08048 Björkeroth, Chun, King, 1806.00660 Bonnefoy, Dudas, 1809.08256 Björkeroth, Di Luzio, Mescia, Nardi, 1811.09637

- Majoron = axion? A la DFSZ or through multiloop processes

Latosinski, Meissner, Nicolai, '12 Ballesteros, Redondo, Ringwald, Tamarit, '16 Ma, Ohata, Tsumura, '17

+ Baryon/lepton number violation + CP violation

Rich non-standard phenomenology to explore!

Plenty of exotic signals to look for!