Darkness revealed The ultra-low surface brightness universe

**** ****

1667-2017

l'Observatoire

(including optical /UV transients)

CNRS - Observatoire de Paris Churchill College, University of Cambridge

First Meeting of LIA ERIDANUS

David Valls-Gabaud

THE MESSIER SURVEYOR

CHURCHILL COLLEGE CAMBRIDGE

CMIS

Current ACDM paradigm of cosmological structure formation

linear & weakly nonlinear scales

> highly nonlinear

Boylan-Kolchin et al. (2009)

Driving science case #1

Key prediction of the ACDM paradigm : The over abundance of dwarf satellites

Canes Venatici I

Bootes

D = 60 kpc $r_{h} = 220 \text{ pc}$ $M_{V} = -5.8 \text{ mag}$ Canes Venatici II

D = 150 kpc $r_{h} = 140 \text{ pc}$ $M_{V} = -4.8 \text{ mag}$

D = 44 kpc $r_h = 70 \text{ pc}$ $M_V = -3.7 \text{ mag}$

Belokurov et al. (2008)

Tension in the CDM paradigm ?

Self-Interacting dark matter

Brooks et al. (2014)

Cold dark matter

Warm dark matter

Discovery rate of Milky Way satellites

K. Bechtol (2015)

The case of Segue I

Belokurov et al. (2007)

Crater II: The 5th largest satellite of the Milky Way

Crater II: The 5th largest satellite of the Milky Way

d = 120 kpc $r_h = 1.06$ kpc (31')

 $\mu_V(r_h) = 30.9 \text{ mag arcsec}^{-2}$

Torrealba et al. (2016)

Wolf et al. (2011)

Drlica-Wagner et al. (2015)

Current instrumentation is not adequate for LSB observations

Flux received from a point source:

$$F_{
m point} = \epsilon \pi \left(rac{D}{2}
ight)^2 t_{exp} \, 10^{-0.4 \, m}$$

 \rightarrow drives telescopes with *large* diameters and *large* focal lengths

Surface brightness received from an extended source:

$$SB_{
m extended} = \epsilon \pi^2$$

 \rightarrow requires fast optics with minimal (f/D) ratio

$$\left(rac{f}{D}
ight)^{-2} t_{exp} \, s_{pix}^2 \, N_{pix} \, 10^{-0.4 \, \mu}$$

Duc et al. (2014)

Resolved star counts vs diffuse light

Crnojević et al. (2015)

25% Dark Matter

70% Dark Energy

[...] galaxies are like icebergs and what is seen above the sky background may be no reliable measure of what lies underneath.

Michael Disney (1976)

The unprobed realm of the ultra-low surface brightness universe

$\mu(V) < 21.5 \text{ mag arcsec}^{-2}$

Mihos et al. (2005)

Limited by systematics

- sky variability
- straylight
- flat field accuracy
- extended PSF wings

The Dragonfly array telescope

Abraham & Van Dokkum (2014)

47 new Milky Way-sized galaxies in the Coma cluster

26 hours

6" FWHM

SB(g) ~ 29.3 mag arcsec⁻² @ 10"

Van Dokkum et al. (2015)

Discovery of ~1000 new galaxies in the Coma cluster

Koda *et al.* (2015)

A new population of hitherto unknown galaxies ultra-diffuse galaxies

Virgo cluster

Merritt et al. (2014)

Perseus-Pisces filament

Martinez Delgado et al. (2016)

S. Danieli

DDOTI as a low-surface-brighntess discovery machine ?

Driving science case #2

The Cosmic Web

Strongest in Lyman α by >1000 x

The case for low z observations :

(i) stronger filaments (ii) minimise cosmological dimming $\sim (|+z)^4$ (iii) efficient UV detectors

z=5

1032A z=0.25 0 6

Bertone + Schaye (2012)

Large telescopes (LSST, GMT, TMT, ELT) × not optimal f/D + lens correctors X complex, extended, anisotropic PSF X high pressure (TAC)

Small telescopes (Super Dragonfly, Huntsm massive array of telephoto lenses X low efficiency (Moon, weather)

Fundamental limits

X the sky is (very) bright and highly varia × high PSF wings due to scattering by atr X straylight contamination amplifies surfa X limits to the flat-field accuracy

The (obvious) solution: a space observatory with a purpose-built telescope

The future of ultra-low surface brightness imaging

Top-level design requirements

FOV	2° x 4°
Focal ratio	f/2
Central obscuration	none
Spatial resolution	l" per pi
Roughness	< 0.5 nm
Flat field rms	< 0.0025%
Distortion	< 0.5%
Diameter	50 to 150
Survey	all sky

- (lifetime of satellite)
- 2 (200x better than HST)
- one (minimal PSF wings)
- per pixel (matches ground)
 - (UV to optical)
- .0025% (TDI / drift scan)
- .5% (in one direction)
- to I 50 cm (set by platform)
- sky (unique)

Obstruction by secondary mirrors yields very extended, anisotropic and complex PSFs

EUCLID

NO LENSES ALLOWED

.

· · ·

(1) multiple internal scattering

.

ACS

(2) Čerenkov emission

GHOSTS produced by ACS/HST

New ultra-diffuse galaxy (2019) 师冬冬 & 郑宪忠老师 Shi Dongdong & Zheng Xiangzhong

Dragonfly ghosts

17 optical elements in 13 groups

TH OH

EF 400mm f/2.8L IS II USM

EF 400mm f/2.8L IS III USM

Internal scattering in optics (prime focus corrector, filters)

Scattering by atmospheric molecules

Major limitations for ground-based detections

Sandin (2015)

Messier (1771) Mem. Acad. Sci. Paris Messier (1780) Conn. Temps

Key additional requirement for MESSIER : — no lenses (to avoid internal scattering and Čerenkov radiation) — flat focal plane

Optimal off-axis mirror-only solution

curved focal surface tiled with curved CCDs

Space Surveillance Telescope by MIT for DARPA (\$75M) (but huge obscuration by M2)

TWO DISRUPTIVE BREAKTHROUGHS : Off-axis purely <u>reflective</u> Schmidt Curved CCDs

Muslimov, Valls-Gabaud, Lemaître et al. (2017)

Requirements for filters

Broad filters : characterise SEDs of stellar populations

Narrow + broad filters : Lyman-α intensity mapping

Curved focal surface configuration

Highly efficient: no moving parts, passive cooling

6 x 2 independent controllers in drift-scan mode, coatings as filters

2°

- QE of each curved CCD optimised for each filter (TQ>85%)

Expected performances - Optical bands Simulated MESSIER images of a real galaxy (M31) seen at 150 Mpc

I Msec

10 Msec

Expected performances - II UV bands

Credit: J. Fonseca & M. Silva / F. van de Voort & J Schaye

MESSIER Overview of Subsystems

Thermal Subsystem

Shield Focal plane radiator Bipods 3-Stage Radiators (not shown)

Star trackers

S-band antenna

Optical Subsystem

Pop-up Baffle Focal Plane Assembly Optical Bench

Solar panels

X-band antenna

Spacecraft bus

Sun-Synchronous Orbit

- 900 km, 98° inclination, LTAN 6h Full-sky survey in 6 months
- Pointing \perp Sun-Earth direction (no Earthshine) Inertial great-circle drift scan centred at the Sun (similar to COBE, WISE, PROBA-V)

Straylight analysis

Items	Absorption	Mirror reflection	Mirror refraction	Scatter
mechanical arm	0.095	0.01	0	0.04
Optical mirror face	0.05	0.9487	0	0.0013
The edge of reflector and back face	0.1	0.05	0	0.85

Photon Monte Carlo Simulations

Allows for the detailed modelling of *all* the physical processes involved

End-to-end simulation

Quantifies the variability of the wings of the PSF across FOV

Lombardo et al. (2019)

CSC Collateral Science Cases (free by-products)

Solar System

Stellar physics

- Comet tails, interplanetary and cometary dust grains
- The extent of mass loss in giant and massive stars Debris discs + exozodi (optical/UV scattering by dust grains)
- Nature of orphan SN and GRB
- Time-domain stellar astronomy: simultaneous multi-wavelength variability tidal disruption events, SNIa, GW UV counterparts
- Legacy: Ultimate multi-band photometric full-sky survey of point sources

nterste ar medium
Properties of interstellar dust grains + Interstellar radiation field

Extragalactic

Cosmology

- What is the true luminosity function of galaxies ? What is the warm molecular content of galaxies in the low-z universe ?
- What is the role of intracluster light and the accretion history in clusters ?
- The fluctuations of the optical / UV cosmological background radiation Calibration of the cosmological distance ladder with Surface Brightness fluctuations
- Baryonic acoustic oscillations with 3 10⁶ galaxies in a thin shell at z=0.65

The Baryonic Cosmic Web

BAO

Panchromatic Unbiased Inventory of Galaxies

Intra-cluster light

Debris discs, exo-zodi

Mass-loss episodes

Time-domain astronomy AGN, SN, GRBs, TDE, GW

Complete sky coverage every 6 months

Includes Moon avoidance angle (35 degrees) and South Atlantic Anomaly

Time sampling

One UV-optical measure per pixel every 90 minutes for 2 days at $\beta = 0$ One UV-optical measure per pixel every 90 minutes at $|\beta| \ge 80$ at all times

CSC 9 Time-domain astronomy Variability and transients simultaneously from the UV to the optical

Year 1985.215

(i) rest-frame UV light curves for SNIa

(ii) Tidal Disruption Events

10⁻³ 10⁻⁴ 10⁻⁵ -³ yr ⁻¹) **SMBHs** 10⁻⁶ dN_{TDE}/dt (Mpc 10⁻⁷ 10⁻⁸ binary SMBHs 10⁻⁹ 10⁻¹⁰ 2

Rate per comoving volume

Fialkov & Loeb (2017)

Wevers *et al.* (2017)

(iii) Orphan SN and GRB

J2000)

Declination

Zinn *et al.* (2012)

(iv) UV counterparts of gravitational wave events

Ridden-Harper *et al*. (2017)

Drout *et al*. (2017)

10000K +0.7d 7600K +1.0d 6600K +1.5d 5100K +2.5d 3700K +3.5d 3300K +4.5d 2800K +5.5d 2500K +7.5d 2400K +8.5d 2500K

(B)

Multiband lightcurves of EM counterparts of gravitational wave events

knova_d1_n10_m0.001_vk0.05_fd1.0_Xlan1e-3.0.h5_LC.csv

Kilonovae observed with MESSIER

Models by Kasen *et al*. (2017)

The MESSIER collaboration

Universidad Nacional Autónoma de México

MESSIER: An All-Sky Ultra-Low Surface Brightness Survey

Further partners welcome !

Designed for New Science

- The Complete Inventory of Galaxies
- The Baryonic Cosmic Web
- From the Zodiacal Light to the
- Cosmological Optical/UV backgrounds
- Unique discovery machine

The First All-Sky Optical-UV LSB Survey

A Unique Legacy Archive for the Astronomy Community with 100s of Millions of Stars and Galaxies

Low-Risk Implementation

- Single Observing Mode
- No Moving Parts
- Passive Cooling

IAU Symposium 355

The Realm of the Low Surface Brightness Universe 8-12 July 2019 Tenerife http://www.iac.es/congreso/iaus355