Spectrograph for COLIBRÍ

- Alan Watson
 - with
- Stéphane Basa, Diego González, Elena Jiménez, and Margarita Pereyra

• Some science cases

- Some technological options
- Concept capabilities and limitations
- Discussion

Outline

Science Cases

GRB Redshifts

• Why?

- Needed to get energetics detailed astrophysics
- Need for population
- Hows
 - IGM Ly α , Ly β , or LyC absorption
 - Host ISM absorption line
 - Host SF emission lines

IGM Absorption

Absorption in 400–800 nm for z = 2.3 to 5.6

Madau model

Host ISM Lines

Strong metallic lines from 1250 Å to 3934 Å Typically EW = 1 Å rest frame or 3 Å observer frame 3 lines in 400-800 nm from z = 0.55 to z = 5.0

Christiensen et al. (2011)

Feasible?

• Detection a line of equivalent width E with a SNR in the line of q requires a SNR in the continuum of p

• For q = 5, $\lambda = 600$ nm, E = 3 Å, and R = 1000

- This is typical of 8-10 meter spectra used for this purpose.
- With a 1.3 meter, we need to observe QUICKLY. Delays of minutes not hours.

- $p = \lambda q / E R$

 - p = 10

Host Emission Lines

- SF lines most likely in LGRBs
 - [O II] 3726, 3737
 - [O III] 4959, 5007
 - $H\beta$, $H\alpha$
 - [O III] leaves z = 400 800 nm at z = 0.6
- Probably better to use larger telescopes.

GRB Redshifts

- Assume 400–800 nm spectrograph
- z < 0.6
 - Host SF emission lines
 - Need host with SF (LGRB)
 - Probably better to use larger telescopes
- 0.6 < z < 2.3
 - Host ISM absorption line
 - R = 1000 or better
 - Spectroscopy of **afterglow**: need fast response
- 2.3 < z < 5.6
 - IGM Ly α , Ly β , or Ly-C absorption
 - R = 100
 - Spectroscopy of **afterglow**: need fast response
- 5.6 < z
 - Spectroscopy above 800 nm with 8-10 meter

GRB Dust

- Discussed by Veronique Buat & David Corre
- R = 30?
- SNR = 20?

• 2175 Å bump in 400-800 nm for 0.9 < z < 2.6

AGN Reverberation Mapping and Changing-Look AGN

- See Diego González's and Elena Jiménez's talks
- R = 1000 to 4000
- SNR = 30?
- Lots of repeat visits (days, weeks, months)

Looking for Kilonovae

Smartt et al. (2017)

- Identification as "not a normal SN" can be done in 400–800 nm
- Detailed astrophysics requires observations above 800 nm ... and really out to 2 microns ... and realistically a larger telescopes

Other Science Cases

• Looking for these here!

Technical Considerations

Technical Considerations

- Image quality and field
- Slit width
- Acquisition/guiding/monitoring camera
- Wavelength range
- Resolutions
- Dispersing elements
- Detectors
- Spectrograph optics
- Slit rotation
- Lamps

- Seeing, telescope optics (no aO), and telescope tracking
- Median: 0.93 arcsec FWHM at 600 nm over 5 arcmin
- 10% to 90%: 0.73 to 1.63 arcsec FWHM
- Uniform over 5 arcmin field without additional optics

Slit Width

- (Don't have money for IFU, so slit.)
- Want slit slightly wider than FWHM
- Want object to be well centered!
- Optimum is about 1.2 arcsec

it.) 1M

W/w = slit width in units of FWHM

Acquisition/Guiding/ Monitoring Camera

- Telescope can't point/guide well enough to blind spectroscopy. Need acquisition/guiding camera with field at least 5 x 5 arcmin
- Want astrometric stability between slit and camera
- Some science also wants photometric monitoring
- Options
 - Reflective slit no monitoring
 - Mirror with hole no monitoring
 - Beam splitter 10%–90% with filter wheel multiwavelength monitoring
 - Dichroic >800 nm? or < 400 nm? monitoring outside spectrograph range

Spectrograph Detectors

- Standard 2k x 2k CCD
 - low RN low dark high fringe amplitude
- Deep-depleted 2k x 2k CCD
 - high RN high dark low fringe amplitude
- Standard 1k x 1k EMCCD in PC mode
 - zero RN moderate dark fringes?
- Standard 2k x 2k sCMOS
 - Iow RN high dark fringes?
- (Don't have funds for 4k detector)

Wavelength Range

Sky brightness

Spectroscopy is difficult above 720 nm – especially at lower resolutions and especially for lines

> Sky transmission 0.8 Transmission 0.6 0.4 0.2 800 1,000 400 600 700 900 500 λ (nm)

Dispersing Elements

- Prism difficult to get R > 100
- VPH grating high efficiency but narrow blaze not necessarily ideal for a low-resolution spectrograph
- Conventional grating or gris lower efficiency by wider blaze

Resolutions

- To detect weak lines, want largest resolution that does not resolve the line.
- Maximum resolution for 400–800 nm
 - 2048 pixels -1024 resolution elements -R = 1000-2000
 - 1024 pixels -512 resolution elements -R = 500-1000
- Lower resolution by
 - using a mechanism with multiple gratings?
 - rebinning no penalty if sky-limited

- Simple 1:1 optics
 - 0.3 arcsec/pixel good spatial sampling
 - 4 pixels/slit waste detector pixels in dispersion direction – use 1×2 binning
- More complex 1:2 optics
 - 0.6 arcsec/pixel worse spatial sampling
 - 2 pixels/slit optimal use of detector pixels in dispersion direction

Possible Concepts

Concept

- Switch from imaging in <60 seconds
- Dichroic at 815 nm
- Acquisition camara > 825 nm
 - 1k x 1k deep-depleted CCD
 - Fixed zy filter
 - 0.3 arcsec/pixel
 - 5 arcmin field

- Spectrograph 400–800 nm
 - Standard 2k CCD
 - Fixed 5 arcmin slit (with variable width?)
 - Option A: 1:1 optics
 - R = 500 1000 with 1.2 arcsec slit
 - R = 1000 2000 with 0.6 arcsec slit
 - R = 333-667 with 1.8 arcsec slit
 - Option B: 1:2 optics
 - R=1000-2000 with 1.2 arcsec slit
 - R= 667–1333 with 1.8 arcsec slit
 - Rebin for lower resolution.

Concept with 1:1 Optics

- with guiding.
- Similar sensitivity to DDRAGO
- Sky-limited in 15 seconds
- 10-sigma at zy = 20.5 in 240 seconds

Camera

• Ability to get GRB afterglow light curves simultaneously

Dark Time: Sky-Limit

- Simple model with constant efficiency of 40%
- SNR = 10 for R = 750 at AB = 20.5 in 900 seconds in dark time
- Standard CCD and EMCCD close to sky limit
- DD CCD has too much read noise
- sCMOS has too much dark current
- Prefer standard CCD

Black = sky-limited Blue = standard CCD Green = EMCCDRed = DD CCDMagenta = sCMOS

Bright-Time: Sky-Limit

- Simple model with constant efficiency of 40%
- SNR = 10 for R = 750 at AB = 19.5 in 900 seconds in bright time
- All close to sky limit

of 40% n 900 Black = sky-limited Blue = standard CCD Green = EMCCD Red = DD CCD Magenta = sCMOS

Lower Resolutions

- Get to sky-limit in 900 seconds at R = 750 or R = 1500
- Can rebin to lower resolution (e.g., to look for Ly absorption) with no loss of sensitivity.
- However shorter exposure times will not be sky-limited and will have a penalty — is this acceptable?

Restrictions

- No < 400 nm?
- No > 800 nm?
- resolution
- Only track parallactic angle?
- All can be solved with cost in other capabilities or complexity

Loose sensitivity for short exposures of faint objects at low