Prospects for kilonova signals in the gravitational wave era

Robert Mochkovitch (Institut d'Astrophysique de Paris)

What to expect for the future: O3 and beyond ?

The kilonova: $10^{-2} - 10^{-1}$ M_{\odot} escaping the system when two NS merge; v_{exp} ~ 0.1 - 0.3 c

Expanding ejecta heated by radioactivity of r-process elements

Equatorial/polar ejecta: lanthanide rich/poor

Rapid evolution from blue to red Quasi-blackbody spectrum

ESO/E. Pian et al./S. Smartt & ePESSTO/L. Calçada

Red KN: lanthanide opacity: $\kappa \sim 5 - 10 \text{ cm}^2\text{g}^{-1}$ Blue KN: lanthanide free: $\kappa \sim 0.5 - 1 \text{ cm}^2\text{g}^{-1}$

Simple model:

$$\frac{dL}{du} = -L + L_* \qquad \text{with } u = \left(\frac{t}{t_0}\right)^2 \text{ and } t_0 = \left(\frac{3\kappa M}{4\pi c v_{exp}}\right)^{1/2} = 2\left(\frac{\kappa_1 M_{-2}}{v_{.1c}}\right)^{1/2} \text{ days}$$

Radioactive heating: $L_* = M \times \epsilon_*$

$$\varepsilon_* \propto t^{-1.3}$$

Composite model to fit the data:

Red component: M=0.036 M_{\odot} ; v_{exp}=0.12c ; κ = 3.5 cm²g⁻¹ Blue component: M=0.014 M_{\odot} ; v_{exp}=0.27c ; κ = 0.5 cm²g⁻¹ $\rightarrow t_0$ (red)=6.5 days ; t_0 (blue)=1.3 days

(Cowperthwaite et al, 2017)

What to expect now?

 $O2 \rightarrow O3$: Horizon distance $D_{\rm H}$ increases from about 140 to 230 Mpc (429 Mpc for design) Key issue for EM counterpart searches as the sources are at larger distance: LOCALIZATION !

- finding the GRB? (Swift, SVOM: ~ 10 arcmin): strong limits on distance and viewing angle
- finding the kilonova
 GW 170817: error box of 28 square degrees + distance from GW → localization in 12 hours

 $m_{\rm KN} \sim 17.5$

Since O3 started three BNS candidates:

- S190425z: $D=155 \pm 45$ Mpc $\rightarrow m_{\rm KN} \sim 20.5 \pm 1.5$ mag but huge error box (L1, V1 only)
- S190426c: $D=377 \pm 100 \text{ Mpc} \rightarrow m_{\text{KN}} \sim 22.5 \pm 2 \text{ mag}$ (possible BH+NS ?)
- S190510g: D=269 ± 108 Mpc $\rightarrow m_{\rm KN} \sim$ 21.7 ±2 mag

When distance increases: larger error box, larger volume to explore, fainter kilonova

 \rightarrow no kilonova found in the three cases above

Population model: distribution in distance and viewing angle:

Kilonova magnitude distribution

$$\begin{split} M_{\theta_{v}} &\approx M_{\theta_{v}=0} + \Delta M (1 - cos\theta_{v}) + \delta M \\ M_{\theta_{v}=0}: \text{ value on-axis ; } \Delta M: \text{ amplitude of angular effect (Wollaeger et al, 2018)} \\ &\delta M (\text{intrinsic variability: e. g. mass, velocity, opacity}) \\ \text{In red band: } \Delta M_{r} &\approx 4 \text{ mag ; } \delta M_{r} &\approx \pm 1 \text{ mag} \\ \text{Calibrated with KN 170817: } M_{\theta_{v}=20^{\circ}} &= -15.6 \\ \text{Using the distribution in distance and viewing angle} \rightarrow \\ \text{O2: half of the events expected brighter than } m = 18.5 \\ \text{O3: half of the events fainter than } m = 20 \end{split}$$

red: AG detected in radio black: all detected GW events

Two-parameter plots (O3)

Example of S190425z: *D*=155 ± 45 Mpc

Putting KN 170817 at the distance of S190425z

KN accessible to COLIBRI but...

... must be first localized ?

Observational strategy

The recent examples: S190425z and S190426c

Both pointed (400+ galaxy-targeted) and wide-field searches (thousands of deg²)

Large error box 7500 deg² (Livingstone + Virgo only) but reasonable coverage by ZTF (40%)

~ 70 reported candidates but no KN found

 \rightarrow not in the searched area or fainter than mag 20.5

S190426c: smaller error box $\sim 1200 \text{ deg}^2$ but larger distance (expected KN mag ~ 22.5)

Discovery and follow-up

Discovery:

- coordination to avoid multiple observations of the same galaxies sufficiently deep reference images?
- smaller error boxes when KAGRA (2020+) and LIGO India (2024+) join the network 5% (2020+) to 25% (2024+) of error boxes smaller than 5 deg²
- Wide-field searches: ZTF efficient down to mag ~ 20.5
- LSST: deep searches in large fields "an amazing machine for discovery" (Cowperthwaite, 2019) Follow-up:

When a kilonova is found:

- multi-wavelength follow-up possible with medium telescopes (in H or K band after a few days)
- search for the afterglow (time to rise to peak $\propto \theta_v^{8/3} \sim 150$ days for 170817 with $\theta_v \sim 20^\circ$)
- redshift of the host galaxy \rightarrow H₀

Conclusions

For viewing angle less favorable than in the case of GW 170817 and/or as the typical distance of GW detected sources increases in O3 and beyond

→ the kilonova will often remain the only accessible EM counterpart but finding it will require deep searches in extended areas

When the kilonova is the only counterpart, $\theta_v > 45^\circ$ in one third of the cases

- $\rightarrow\,$ viewing angle diversity \rightarrow angular structure of the KN ejecta
- $\rightarrow\,$ also exploration of the intrinsic diversity: $M_{KN}\,,\,v_{ej}$, κ

Avidly waiting for the first kilonovae of O3

also waiting for the first kilonova from a BH+NS merger (if any ?)

(but distance larger in average \rightarrow kilonova fainter for same $M_{KN},\,v_{ej},\,\kappa)$

Ready to bet when it comes ?