Colibri Reduction Pipeline

Nat Butler (ASU Cosmology Initiative)

Summary

- * RATIR pipeline as basis for Colibri
 - active since 2012, unchanged for years now
- * Active Development on Coatli/DDOTI
 - (same underlying tools, but)
 - more interactive (Coatli)
 - faster (DDOTI)

Optical/NIR Pipeline Approach

All open source software, running in linux.

Cronjobs and shell scripts: embarrassingly parallel execution.

Core tasks/scripts:

Image reduction (bias-subtraction, flat-fielding, etc.) in cfitsio

Distortion/linearity corrections using custom python scripts

Images aligned with custom python scripts and astrometry.net

Image stacking using swarp

Photometry (aperture or PSF) using a combination of sextractor and custom python scripts.

Optical/NIR Pipeline Approach

Higher Level summary:

Images are mapped to a common pixel grid (swarp) → accurate lightcurves AND colors.

Catalog comparison allows for photometric calibration and new source identification.

Webpage to Summarize Results:

Plot lightcurves and SEDs. Determine photometric redshifts. Etc.

Example: The RATIR 6 channel Camera

"Reionization And Transients InfraRed camera"

- US/Mexican Collaboration.
- Online Since Fall 2012.
- Simultaneous images in 6 "colors."
- First z~6 GRB detected in June 2013.

Fully Automated in Software

Telescope responds within minutes, thanks to Alan Watson (and others).

(interrupts, schedules, and slews)

Images (6 channels): reduced, sources identified, compared to existing catalogs.

New sources publicized automatically!

the Observatorio Astronóm

Nat Butler

Lia Eridanus

An Example RATIR Page

This is an auto-generated webpage For a RATIR event in October 2017.

The webpage shows our 6 images, with DSS stars and the Swift XRT error circle.

The new source is identified and a GCN circular is drafted.

Milliam H. Lee (UMWH), Michael G. Richer (UMWH), Ori Fax (STSCI), J. Xwier Prochasa (USSC), Josh Bioen (USS), Mionine Cucchara (WFI), Eleanora Troja (GSKC), Been Littligahns (ABU), Enrice Marter Aul: OCSCI, Jessie Ganziales (UMWH), Carles Rosin-Zablaga (UMWH), Harvey Biveley (GSFC), John Capone (UMD), V. Zach Gelbhou (U. Nach-), an Vacki Tey (UMD) report.

We describe the THU of the TTPUCK LOAD, a table and A solution the the transmission of the transmission o

For a source within the Swift-XRT error circle, in comparison with the USNO-B1 and IMASS catalogs, we obtain the following detections and unper limits (linear):

> 23.89 > 23.85 > 21.63

Nat Butler

Lia Eridanus

An Example RATIR Page

Now look further down the page:

This event is detected in H, and possibly in J, but not bluer.

Color and time histories are used to help identify interesting sources.

Photo-z are calculated (quickly) for all sources in the field.

The new source photo-z and models are plotted along with statements about the photo-z included in GCN.

Example: The DDOTI

6 telescopes: 70 deg² field

Nat Butler

Lia Eridanus

The **DDOTI**

Also, fully automated in software.

This single image contains 40,000 stars and galaxies.

Find the needle in the haystack!

(All sources shown are catalogued.)

Chromium Web Browser

😣 😑 💷 20170622T044310 17 C0_W redux - Chromium

C 20170622T044310 1 ×

RA 187.33078938, Dec 12.57046889 [17 Frame, 20170622T044310 - 20170622T051654]

ution Time for All Tasks: 4.68 minutes logfil n 14:43, 8 users, load average: 4.96, 3.76, 2.2 d Thu Apr 12 03-47-02 UTC 2018

The DDOTI

For DDOTI, I try to avoid operations directly on the large (6k x 6k) images.

Image operations (e.g. flat fielding) row-wise with cfitsio.

Sextractor/swarp to apply common apertures across frames for photometry.

The rest of the work is in catalog space.

Pipeline runs for 6 cameras on a single 4-core machine!

Chromium Web Browser

20170622T0443101 ×

uze without circles SNO-B1 R Band Photometry (Uncatalogued Sources, SNR>10, Nmax=50)

id RA DEC mag dmag fwhm slope dslope chi2 m 187.22819200 14.53642800 17.0789 0.0591 6.8000 NA NA NA NA 0

libration	Source	Photomet

File	Xrange	Yrange	RA1	RA2	DEC1	DEC2	EXPOSURE	FWHM	Mag-18s	ZeroPoint
00 stack CO.fits	1-1887	1-1882	188.386984	189.341666	18.644025	11.594645	1828.8	5.8	18.23	21.44
31 stack C0.fits	1888-3774	1-1882	187.311320	188.382462	18.649858	11.596635	1828.0	5.5	17.94	21.36
32 stack C0.fits	3775-5661	1-1882	186.235655	187.310749	18.650005	11.594649	1828.0	5.9	17.81	21.37
33 stack C0.fits	5662-7549	1-1882	185.275755	186.239849	18.647069	11.589519	1828.0	6.9	17.62	21.40
10 stack CO.fits	1-1887	1883-3764	188.391414	189.346317	11.590073	12.645555	1828.0	2.1	19.11	21.31
11 stack CO.fits	1888-3774	1883-3764	187.311322	188.386416	11.595205	12.647733	1828.0	1.9	19.31	21.32
12 stack CO.fits	3775-5661	1883-3764	186.231229	187.310749	11.597193	12.645560	1828.8	1.9	19,49	21.48
13 stack CO.fits	5662-7549	1883-3764	185.269899	186.235083	11.595205	12.639962	1828.0	3.8	18.67	21.51
00 stack CO.fits	1-1887	3765-5646	188.395881	189.352976	12,640516	13,696466	1828.0	2.0	19.28	21.31
11 stack CO.fits	1888-3774	3765-5646	187.311324	188.390844	12,646116	13,698830	1828.0	2.3	19.13	21.31
2 stack CO.fits	3775-5661	3765-5646	186.226767	187.310749	12,648291	13,696471	1828.8	2.0	19,42	21.47
23 stack C0.fits	5662-7549	3765-5646	185.262388	186.230655	12.646116	13.698406	1828.0	2.3	19.37	21.49
00 stack C0.fits	1-1887	5647-7528	188.399966	189.361986	13.690941	14.649622	1828.0	2.3	18.84	21.33
a stack CO.fits	1888-3774	5647-7528	187.311326	188.395308	13,697027	14,648809	1828.0	2.5	18,94	21.28
2 stack CO.fits	3775-5661	5647-7528	186.222703	187.310749	13,699389	14.645723	1828.0	2.2	19.29	21.45
33 stack C0.fits	5662-7549	5647-7528	185.253537	186.226190	13,697027	14,642003	1828.0	2.5	18.51	21.50

Total Execution Time for All Tasks: 4.68 minutes logfile 20:47:02 up 14:43, 8 users, load average: 4.96, 3.76, 2.22 Last Updated: Thu Apr 12 03:47:02 UTC 2018 (natbutler@asu.e

$\mathsf{DDOTI} \to \mathsf{Colibri}$

DDOTI utility for Colibri:

Reductions elements have been greatly sped-up versus RATIR.

Can now:

Be faster: Handle all files and catalogs in fits binary Avoid most python scripts in favor of c

Do more: Correct for Distortions and PSF variations Remove satellite trails Apply sextractor apertures in custom c code Utilize local (USNO/APASS) catalogs

$\mathsf{DDOTI} \to \mathsf{Colibri}$

Nat Butler

Lia Eridanus

Final Example: Coatli

Another telescope / pipeline running on San Pedro.

Field of view more like Colibri.

Good example of other visuals and tools that could be provided to an SVOM duty operator. COATLI C0 w : RA 245.869308 , Dec 74.674265 [N=532 Frame(s), 20180812T082313 - 20180812T115213] Frame Size: 949 x 1270 Exposure Time: 9210.0 seconds 10-sigma limiting mag: 21.45 Zero-Point: 22.52 FWHM: 5.23 pixels [Standard view] [mage without circles] [DS5 image] [Weight image] [First N2 frames] [Second N2 frames] [Dtference image]

Nat Butler

Lia Eridanus

Conclusions

I have been working with Damien to understand the Colibri/SVOM requirements.

I have the working RATIR pipeline, very close to what we need.

Rolling out the final Colibri pipeline will depend on seeing data (distortions, noise characteristics, etc.).

Will benefit from development on DDOTI and Coatli.