COLIBRI SCIENTIFIC PERFORMANCES

David Corre

Laboratoire de l'Accélérateur Linéaire, Orsay, France

2019 LIA France-Mexico workshop, Toulouse

OUTLINE

COLIBRI: A GROUND FOLLOW-UP TELESCOPE FOR SVOM Overview Requirements Software development

COLIBRI'S SENSITIVITY

ESTIMATION OF PHOTO-Z ACCURACY Photo-z method Photo-z algorithm validation

- Mock samples
- Results

Overview Requirements Software development

OVERVIEW

- Observatory availability: 90%
- Median seeing: about 0.8"
- Primary mirror: 1.3m
- ▶ Delay for pointing: ≤ 30 seconds (goal: 20s)
- Dedicated follow-up telescope for SVOM
- 2 (goal 3) simultaneous arms:
 - FoV: 26' in VIS, 21.7' in NIR
 - spectral coverage: 400-1700 nm

Overview Requirements Software development

OVERVIEW

- Observatory availability: 90%
- Median seeing: about 0.8"
- Primary mirror: 1.3m
- ▶ Delay for pointing: ≤ 30 seconds (goal: 20s)
- Dedicated follow-up telescope for SVOM
- 2 (goal 3) simultaneous arms:
 - FoV: 26' in VIS, 21.7' in NIR
 - spectral coverage: 400-1700 nm

Overview Requirements Software development

MAIN REQUIREMENTS

- Precision of localisation: < 0.5"</p>
- Limiting magnitude:
 - 30s: R=19.2, J=18 (AB mag)
 - 5min: R=22, J=20 (AB mag)
- Delivering redshift estimation 5 minutes after start of observations

Overview Requirements Software development

END-TO-END SOFTWARE

- GRB light curve modelling: Empirical and synchrotron model
- Exposure Time Calculator: T_{exp}, SNR, limiting magnitude
- Image Simulator: insert GRB in realistic FoV
- Photometric redshift code
- open source

Overview Requirements Software development

EXPOSURE TIME CALCULATOR

- Compute T_{EXP}, SNR, limiting magnitude
- Transmission of each optical element
- Detector characteristics
- Easily adaptable to other telescopes
- Developed to
 - compare different instrument designs
 - observation preparation tool

2019 LIA France-Mexico

2019/06/04

COLIBRI scientific performances

Overview Requirements Software development

IMAGE SIMULATOR

Realistic Point Spread Functions

- Querying astronomical sources catalogues
- Position a GRB in realistic FoV
- Easily adaptable to other telescopes
- Developed to feed and test the reduction pipeline

ILLUSTRATION FOR GRB 170817A

COLIBRI: A GROUND FOLLOW-UP TELESCOPE FOR SVOM

COLIBRI'S SENSITIVITY

ESTIMATION OF PHOTO-Z ACCURACY

SCIENTIFIC PERFORMANCES: 1/3

Estimated 5 σ limiting magnitudes

- 30s: r=19.2, J=18 (AB mag)
- 5min: R=22, J=20 (AB mag)

band	5s	30s	5min	1h
gri	20.42	21.57	22.83	24.19
zy	18.76	19.94	21.21	22.57
В	19.35	20.80	22.08	23.43
g	19.74	21.12	22.40	23.76
r	19.65	21.02	22.30	23.66
i	19.26	20.54	21.81	23.17
z	18.60	19.87	21.14	22.49
У	17.65	18.99	20.27	21.63
J	18.16	19.32	20.58	21.93
Н	17.68	18.69	19.95	21.30

2019 LIA France-Mexico

SCIENTIFIC PERFORMANCES: 2/3

- Limiting magnitudes requirement satisfied
- at least 2.5 mag deeper at early times compared to previously detected GRBs

SCIENTIFIC PERFORMANCES: 3/3

Ability to detect high-z, dusty GRB: GRB 080607 with $A_V \sim 2.33$ mag at z=3.03

STACK OF 30s exposures

COLIBRI: A GROUND FOLLOW-UP TELESCOPE FOR SVOM

COLIBRI'S SENSITIVITY

ESTIMATION OF PHOTO-Z ACCURACY

Photo-z method Photo-z algorithm validation Mock samples Results

Рното-z: Метнор

METHOD

MCMC algorithm based on detection of spectral signatures: Ly- α transition and Lyman break at 1216×(1+z) and 912×(1+z) Å

ILLUSTRATION

- $F_{mod} = F_0 \times (\frac{\lambda}{\lambda_0})^{\beta} \times exp \left[-\tau_{dust}(z, A_V^{host}) \tau_{IGM}(z) \right) \right]$
- F₀= 1 mJy , β =0.66, MW extinction curve with A_V =0.5 mag, only redshift varies

Photo-z method Photo-z algorithm validation Mock samples Results

PHOTO-Z: VALIDATION USING 19 GRBs SED

2019 LIA France-Mexico

Photo-z method Photo-z algorithm validation Mock samples Results

PHOTO-Z: VALIDATION USING 19 GRBs SED

2019 LIA France-Mexico

Photo-z method Photo-z algorithm validation Mock samples Results

MOCK SAMPLE

GOAL

Estimate photometric redshift accuracy on a GRB mock sample

- ▶ 625 GRBs spanning 0 < z < 10</p>
- 25% GRBs with A_V > 1 mag
- Other parameters randomly drawn from distributions based on real observations

Photo-z method Photo-z algorithm validation Mock samples Results

GRB LIGHT CURVE MODELLING

GRB INTRINSIC EMISSION

EMPIRICAL MODEL

 $F_{em}(\lambda, t, \beta, \alpha) = F_0 \times (\frac{\lambda}{\lambda_0})^{\beta} \times (\frac{t}{t_0})^{\alpha}$

THEORETICAL MODEL

- Synchrotron model (Granot & Sari 2002)
- Governed by 7 parameters:
 - t: time
 - z: GRB redshift
 - ► *E*₅₂: total energy in the shell
 - p: index e- power-law distribution
 - ϵ_B : fraction shock energy \Rightarrow B
 - ϵ_e : fraction shock energy \Rightarrow e-
 - n₀: particle density

FLUX ATTENUATION ALONG GRB L.O.S

Dust in Host galaxy + Inter Galactic Medium

$$\blacktriangleright F_{obs}(\lambda, t, \beta, \alpha, A_V, z) = F_{em}(\lambda, t, \beta, \alpha) \times exp\left[-\tau_{dust}(z, A_V^{host}) - \tau_{IGM}(z))\right]$$

2019 LIA France-Mexico D. Corre 2019/06/04 COLIBRI scientific performances 14/18

Photo-z method Photo-z algorithm validation Mock samples Results

END-TO-END SIMULATION EXAMPLE

GRB intrinsic emission simulated with synchrotron model at z = 5ATTENUATED BY:

- dust in Host galaxy (A_V=0.2 mag)
- ► IGM (z=5)
- Galactic extinction (A_V=0.1 mag)
- Earth atmosphere

Photo-z method Photo-z algorithm validation Mock samples Results

END-TO-END SIMULATION EXAMPLE

GRB intrinsic emission simulated with synchrotron model at z = 5

ATTENUATED BY:

- dust in Host galaxy (A_V=0.2 mag)
- ► IGM (z=5)
- Galactic extinction (A_V=0.1 mag)
- Earth atmosphere

Photo-z method Photo-z algorithm validation Mock samples Results

END-TO-END SIMULATION EXAMPLE

GRB intrinsic emission simulated with synchrotron model at z = 5

ATTENUATED BY:

- dust in Host galaxy (A_V=0.2 mag)
- ► IGM (z=5)
- Galactic extinction (A_V=0.1 mag)
- Earth atmosphere
- ► Telescope

15/18

Photo-z method Photo-z algorithm validation Mock samples Results

END-TO-END SIMULATION EXAMPLE

GRB intrinsic emission simulated with synchrotron model at z = 5

10

ATTENUATED BY:

- dust in Host galaxy (A_V=0.2 mag)
- ► IGM (z=5)
- Galactic extinction (A_V=0.1 mag)
- Earth atmosphere

► Telescope

Photo-z method Photo-z algorithm validation Mock samples Results

END-TO-END SIMULATION EXAMPLE

GRB intrinsic emission simulated with synchrotron model at z = 5

ATTENUATED BY:

- dust in Host galaxy (A_V=0.2 mag)
- ► IGM (z=5)
- Galactic extinction (A_V=0.1 mag)
- Earth atmosphere

Photo-z method Photo-z algorithm validation Mock samples Results

END-TO-END SIMULATION EXAMPLE

GRB intrinsic emission simulated with synchrotron model at z = 5

ATTENUATED BY:

- dust in Host galaxy (A_V=0.2 mag)
- ► IGM (z=5)
- Galactic extinction (A_V=0.1 mag)
- Earth atmosphere
- Telescope

Photo-z method Photo-z algorithm validation Mock samples Results

END-TO-END SIMULATION EXAMPLE

GRB intrinsic emission simulated with synchrotron model at z = 5FOCUS ON FIRST 5MIN:

- Observation strategy
- COLIBRI response
- Fit light curve each band
- Extract SED
- Run MCMC

2019 LIA France-Mexico

Bayesian estimation of z, A_V, β

D. Corre

Photo-z method Photo-z algorithm validation Mock samples Results

END-TO-END SIMULATION EXAMPLE

GRB intrinsic emission simulated with synchrotron model at z = 5FOCUS ON FIRST 5MIN:

- Observation strategy
- COLIBRI response
- Fit light curve each band
- Extract SED
- Run MCMC
- Bayesian estimation of z, A_V, β

Sequence	Time since burst	Exposure time	band
	s	s	
1	60	30	gri
1	60	30	zy
1	60	30	J
2	90	30	r
2	90	30	z
2	90	30	н
3	120	30	i
3	120	30	У
3	120	30	J
4	150	30	z
4	150	30	g
4	150	30	Η
5	180	30	У
5	180	30	r
5	180	30	J
6	210	30	g
6	210	30	i

Photo-z method Photo-z algorithm validation Mock samples Results

END-TO-END SIMULATION EXAMPLE

GRB intrinsic emission simulated with synchrotron model at z = 5FOCUS ON FIRST 5MIN:

- Observation strategy
- COLIBRI response
- Fit light curve each band
- Extract SED
- Run MCMC

2019 LIA France-Mexico

Bayesian estimation of z, A_V, β

D. Corre

Photo-z method Photo-z algorithm validation Mock samples Results

END-TO-END SIMULATION EXAMPLE

GRB intrinsic emission simulated with synchrotron model at z = 5FOCUS ON FIRST 5MIN:

- Observation strategy
- COLIBRI response
- Fit light curve each band
- Extract SED
- Run MCMC

2019 LIA France-Mexico

Bayesian estimation of z, A_V, β

D. Corre

Photo-z method Photo-z algorithm validation Mock samples Results

END-TO-END SIMULATION EXAMPLE

GRB intrinsic emission simulated with synchrotron model at z = 5FOCUS ON FIRST 5MIN:

- Observation strategy
- COLIBRI response
- Fit light curve each band
- Extract SED
- Run MCMC

2019 LIA France-Mexico

Bayesian estimation of z, A_V, β

D. Corre

Photo-z method Photo-z algorithm validation Mock samples Results

END-TO-END SIMULATION EXAMPLE

GRB intrinsic emission simulated with synchrotron model at z = 5FOCUS ON FIRST 5MIN:

- Observation strategy
- COLIBRI response
- Fit light curve each band
- Extract SED
- Run MCMC

2019 LIA France-Mexico

Bayesian estimation of z, A_V, β

D. Corre

Photo-z method Photo-z algorithm validation Mock samples Results

END-TO-END SIMULATION EXAMPLE

GRB intrinsic emission simulated with synchrotron model at z = 5FOCUS ON FIRST 5MIN:

- Observation strategy
- COLIBRI response
- Fit light curve each band
- Extract SED
- Run MCMC

2019 LIA France-Mexico

D. Corre

Photo-z method Photo-z algorithm validation Mock samples Results

END-TO-END SIMULATION EXAMPLE

GRB intrinsic emission simulated with synchrotron model at z = 5FOCUS ON FIRST 5MIN:

- Observation strategy
- COLIBRI response
- Fit light curve each band
- Extract SED
- Run MCMC
- Bayesian estimation of z, A_V, β

Photo-z method Photo-z algorithm validation Mock samples Results

16/18

MOCK SAMPLE RESULTS

2019

GRB light curve simulated for 5min starting at T_{0+1} min for a given observation strategy

		nb of de	etections	z _{phot}	– z _{true}	$\left(z_{phot}-z_{true}\right)/\left(1+z_{true}\right)$
	z < 3.5	207 / 23	38 (87%)	-0.21	\pm 1.11	0.0 ± 0.42
	$3.5 \le z \le 8$	243 / 30	04 (80%)	-0.14	\pm 0.49	$\textbf{-0.03} \pm \textbf{0.10}$
	z > 8	61 / 83	3 (73%)	-1.21	\pm 1.32	-0.13 ± 0.14
	$A_V > 1 \text{ mag}$	94 / 12	5 (75%)		-	-
LIA Franc	e-Mexico	D. Corre	2019/0	6/04	COLIB	RI scientific performances

Photo-z method Photo-z algorithm validation Mock samples Results

zsim: 7.83 Av_sim: 0.18 Ş SED extracted at T-To=130 sec z sim=7.83, Av sim=0.18 q ւ տուդ . 6 107 beta ð Flux [µ]y] 101 mol sha GRB 8 norm (gft data) median best fit 100 20 50 15 .00 ż de la 0.9 20 à 0.0 3 3 22 10000 12500 15000 17500 20000 2500 5000 7500 Av beta Observed wavelength [angstroms] z norm

MOCK SAMPLE RESULTS

Photo-z method Photo-z algorithm validation Mock samples Results

SUMMARY

- Development of an end-to-end software to assess COLIBRI's sensitivity. (Adaptable to other optical/NIR telescopes)
- Development of a Bayesian photometric redshift code validated on real GRB SEDs
- COLIBRI's design fulfils requirements on sensitivity
- Relative accuracy on z_{phot}:
 - 3.5 < z < 8: about 10%</p>
 - z > 8: about 14%
- Due to its sensitivity and very rapid follow-up, COLIBRI will routinely detect GRBs suffering a high amount of visual extinction.

17/18

Photo-z method Photo-z algorithm validation Mock samples Results

ONE INTERESTING PERSPECTIVE WITH COLIBRI:

Corre+18 18/18

2019 LIA France-Mexico

D. Corre 2019/06/04

4 COLIBRI scientific performances

Photo-z method Photo-z algorithm validation Mock samples Results

Thank you!

Photo-z method Photo-z algorithm validation Mock samples Results

MOCK SAMPLES: EMPIRICAL MODEL

Photo-z method Photo-z algorithm validation Mock samples Results

MOCK SAMPLES: EMPIRICAL MODEL

Photo-z method Photo-z algorithm validation Mock samples Results

MOCK SAMPLES: THEORETICAL MODEL

2019 LIA France-Mexico

D. Corre 2019/06/04

COLIBRI scientific performances

Photo-z method Photo-z algorithm validation Mock samples Results

MOCK SAMPLES: THEORETICAL MODEL

Photo-z method Photo-z algorithm validation Mock samples Results

MOCK SAMPLES: THEORETICAL MODEL RESULTS

D. Corre 20

Photo-z method Photo-z algorithm validation Mock samples Results

MOCK SAMPLES: EMPIRICAL MODEL

		nb of detections	z _{phot} – z _{true}	$\left(z_{phot}-z_{true}\right)/\left(1+z_{true} ight)$
	z < 3.5	190 / 238 (80%)	-0.15 ± 1.29	0.03 ± 0.51
without CAGIRE	$3.5 \leq z \leq 8$	199 / 304 (65%)	$\textbf{-0.14} \pm \textbf{0.61}$	-0.03 ± 0.12
	z > 8	1 / 83 (1%)	-	-
	$A_V > 1 \text{ mag}$	75 / 125 (60%)	-	-
	z < 3.5	207 / 238 (87%)	-0.21 ± 1.11	0.0 ± 0.42
with CAGIRE	$3 \le z \le 8$	243 / 304 (80%)	$\textbf{-0.14} \pm \textbf{0.49}$	-0.03 ± 0.10
	z > 8	61 / 83 (73%)	-1.21 \pm 1.32	$\textbf{-0.13} \pm \textbf{0.14}$
	$A_V > 1 \text{ mag}$	94 / 125 (75%)	-	-

Photo-z method Photo-z algorithm validation Mock samples Results

MOCK SAMPLES: THEORETICAL MODEL

		nb of detections	z _{phot} – z _{true}	$\left(z_{phot}-z_{true} ight)/\left(1+z_{true} ight)$
<i>t</i> ₀ +60s	z < 3.5	97 / 138 (70%)	0.01 ± 0.89	0.11 ± 0.46
	$3.5 \le z \le 8$	137 / 279 (49%)	$\textbf{-0.07} \pm \textbf{0.33}$	$\textbf{-0.01} \pm \textbf{0.05}$
	z > 8	37 / 83 (23%)	$\textbf{-1.29} \pm \textbf{1.31}$	$\textbf{-0.13} \pm \textbf{0.13}$
<i>t</i> ₀ +12h	z < 3.5	63 / 138 (46%)	$\textbf{-0.11} \pm \textbf{0.74}$	0.06 ± 0.48
	$3.5 \le z \le 8$	99 / 279 (35%)	$\textbf{-0.14} \pm \textbf{0.45}$	$\textbf{-0.03}\pm0.09$
	z > 8	11 / 83 (13%)	$\textbf{-1.10} \pm \textbf{1.11}$	$\textbf{-0.11} \pm \textbf{0.11}$
<i>t</i> ₀ +24h	z < 3.5	57 / 138 (41%)	$\textbf{-0.27} \pm \textbf{0.79}$	$\textbf{-0.02}\pm0.34$
	$3.5 \le z \le 8$	90 / 279 (32%)	$\textbf{-0.16} \pm \textbf{0.36}$	$\textbf{-0.03}\pm0.07$
	z > 8	10 / 83 (12%)	$\textbf{-1.21} \pm \textbf{1.24}$	$\textbf{-0.12}\pm0.12$