Afterglow emission from GRBs
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Parametrization of our “ignorance”...

Magnetic field is amplified by the shock: €_

Electrons are accelerated by the shock: €_
Electron number density is a power-law: n o« y ™
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The dynamics can be rescaled...
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And the radiation too... (see VanEerten 2012, Granot 2012)
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Signatures of a jet cocoon in early spectra of a
supernova associated with a ~-ray burst
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Long ~-ray bursts are associated with energetic, broad-lined,
stripped-envelope supernovae®? and as such mark the death of
massive stars. The scarcity of such events nearby and the brightness
of the ~-ray burst afterglow, which dominates the emission in the
first few days after the burst, have so far prevented the study of the
very early evolution of supernovae associated with ~-ray bursts®. In
hydrogen-stripped supernovae that are not associated with ~-ray
bursts, an excess of high-velocity (roughly 30,000 kilometres per
second) material has been interpreted as a signature of a choked jet,
which did not emerge from the progenitor star and instead deposited
all of its energy in a thermal cocoon?. Here we report multi-epoch
spectroscopic observations of the supernova SN 2017iuk, which is
associated with the ~-ray burst GRB 171205A. Our spectra display

metallicity (12 + log(O/H) = 8.41; Methods). It is much more massive
than typical GRB hosts, which are normally metal-poor, star-forming
dwarf galaxies, particularly at low redshift'?,

The proximity of GRB 171205A motivated us to undertake multi-
wavelength photometric and spectroscopic follow-up observations.
The light curve exhibits unusual behaviour, with colour evolution of
the optical and ultraviolet emission at very early phases, in contrast to
the rapid decay observed in X-ray emission. A few minutes after the
burst, a first light-curve bump emerged, characterizing the emission
during the first two days, with fast evolution from ultraviolet to redder
wavelengths (Fig. 1). After the second day, the luminosity of the under-
lying supernova (SN 2017iuk) started to increase, reaching its maxi-
mum B-band magnitude on 2017 December 16.4 uT, roughly 11.0 days
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Conclusions



* Determination of the physical parameters from
the observations is complicated

* Cocoon emission is important!
* Thermal emission can help us to understand the
progenitor structure
* Non-thermal emission contributes and in some
cases dominates the emission...
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