
GRANDMA

GRANDMA development workflow

This document describes the development workflow followed by the GRANDMA collaboration.
1. Environment setup
2. Development workflow
3. Publishing workflow
4. Deployment
5. Git essentials
6. Advanced Git

1

Clone GRANDMA repository to your local working area. From your command line:

$> git clone git@gitlab.in2p3.fr:GRANDMA/GRANDMA.git GRANDMA.git

$> cd GRANDMA.git

GRANDMA's workflow is based on a light Driessen's branching model; you'll need to install once

a git extension to provide high-level git support. We are using git-flow (AVH Edition) , a fork

of original Driessen script: petervanderdoes/gitflow-avh

See the gitflow-avh Wiki for up-to-date Installation Instructions. In a nutshell:

on Mac OS X:

$> brew install git-flow-avh

on other *nix:

$> wget --no-check-certificate -q \

 https://raw.githubusercontent.com/petervanderdoes/gitflow-avh/develop/contrib/gitflow-installer.sh \

 && sudo bash gitflow-installer.sh install stable

$> rm gitflow-installer.sh

on Windows:

See [Installing gitflow-avh on Windows](https://github.com/petervanderdoes/gitflow-avh/wiki/Installing-on-Windows)

Check:

$> git flow version

1.11.0 (AVH Edition)

$> git flow help

usage: git flow <subcommand>

Available subcommands are:

 init Initialize a new git repo with support for the branching model.

 feature Manage your feature branches.

 bugfix Manage your bugfix branches.

 release Manage your release branches.

 hotfix Manage your hotfix branches.

 support Manage your support branches.

 version Shows version information.

Environment setup

Cloning GRANDMA GitLab repository

Installing the gitflow script

18 Nov 2018

1 / 13

 config Manage your git-flow configuration.

 log Show log deviating from base branch.

Try 'git flow <subcommand> help' for details.

You'll only need to do this once, just after cloning:

$> cd GRANDMA.git

$> git flow init -d

Using default branch names.

Which branch should be used for bringing forth production releases?

 - develop

 - master

Branch name for production releases: [master]

Which branch should be used for integration of the "next release"?

 - develop

Branch name for "next release" development: [develop]

How to name your supporting branch prefixes?

Feature branches? [feature/]

Bugfix branches? [bugfix/]

Release branches? [release/]

Hotfix branches? [hotfix/]

Support branches? [support/]

Version tag prefix? []

Hooks and filters directory? [/Some/Where/GRANDMA/GRANDMA.git/.git/hooks]

 -d option selects defaults values.

Verify that the two main branches are there:

$> git branch

* develop

 master

The develop branch is the selected branch (with its '') where most of the work will happen, and the

*master branch will keep track of production-ready code. More details in Development workflow.

Initializing gitflow

18 Nov 2018

2 / 13

GRANDMA workflow is based on the Vincent Driessen’s branching model and a git-flow library

of git subcommands to automate some parts of the flow making work more easily. However,

GRANDMA development workflow is mainly concerned with a small part of the full git-flow

process and essentially uses the feature branch merged into develop one management.

GRANDMA development workflow will use the following branch structure in local repositories:

Production branch (called ‘master’)

This branch represents the latest released / deployed / in-production code base. Only updated by

merging other branches (mainly 'develop' branch) into it. Only GRANDMA mainteners can

merged in it.

Development branch (called ‘develop’)

This is the main development branch where all the changes destined for the next release are

placed, by merging feature branches into this branch.

Feature branches (always prefixed with ‘feature/’)

When you start work on anything non-trivial or even trivial, you create a feature branch. When

finished, you’ll can publish your feature branch through a Merge Request as detailed in

 pubworkflow .

Only Production and Development branches should be visible in GRANDMA reference GitLab

repository.

You interact with the GRANDMA repository by creating feature (or issue) branches in your local

repository (cloned repository) and by submitting Merge Request to the GRANDMA reference

repository.

First, create a feature branch. It's good practice to link all feature branches with an issue and to name

Development workflow

Principles

Developing a new feature

18 Nov 2018

3 / 13

feature branches descriptively. Here, issue is Issue #1; let's create a 'hello-world':

$> git flow feature start "Issue-#1-create-hello-world"

This produces output like:

Switched to a new branch 'feature/Issue-#1-create-hello-world'

Summary of actions:

- A new branch 'feature/Issue-#1-create-hello-world' was created, based on 'develop'

- You are now on branch 'feature/Issue-#1-create-hello-world'

Now, start committing on your feature. When done, use:

 git flow feature finish Issue-#1-create-hello-world

You can always verify you are in the proper feature branch:

$> git flow feature

Next, you create the hello world file for your feature request and commit the changes just as you

would normally do.

$> touch hello-world.cc

$> … edition …

$> git status

$> git add hello-world.cc

$> … edition …

$> git add hello-world.cc

$> git commit -m 'Implement an awesome Hello World - Fixed #1'

It's common to make multiple commits during the course of solving a problem and the work may

go on for an extended period of time, maybe hours or even days. In that case it may be a good

practice to clean up its local history and the commit messages. You can do this before finishing

by rebasing as explained in gitadvanced .

You may have to be sure that you are adding new code in an up-to-date develop branch; if needed

you want to incorporate the recent changes from origin and possibly resolve early conflicts. So you

collect the latest potential changes of the origin repository:

$> git fetch origin

$> git flow feature rebase 'Issue-#1-create-hello-world'

In your environment, there would be no conflicts … You can finish the feature:

Once the work is done and the feature branch merged into the develop one, you may publish it so that

it could be added in reference repository after code reviews.

Check your work:

$> git flow feature diff 'Issue-#1-create-hello-world'

Then you publish your feature branch into the origin repository.

Doing the work

Preparing the push

Publishing a feature branch

18 Nov 2018

4 / 13

$> git flow feature publish 'Issue-#1-create-hello-world'

The next step details how to create a Merge Request to open a code review or asking a question or

help.

18 Nov 2018

5 / 13

With git-flow, pull requests from feature branches are always made against the 'develop' branch.

Either way you'll need to push your changes so the merge master can pull them. To do so with git-flow

we 'publish' the branch.

Once your changes are ready for a review or a merge request, you'll need to push them to your fork

repository.

$> git flow feature publish 'Issue-#1-create-hello-world'

Enumerating objects: 4, done.

Counting objects: 100% (4/4), done.

Delta compression using up to 4 threads

Compressing objects: 100% (3/3), done.

Writing objects: 100% (3/3), 390 bytes | 390.00 KiB/s, done.

Total 3 (delta 1), reused 0 (delta 0)

remote:

remote: To create a merge request for feature/Issue-#1-create-hello-world, visit:

remote: https://gitlab.in2p3.fr/<your-id>/grandma/merge_requests/new?merge_request%5Bsource_branch%5D=feature%2FIssue-%231-create-hello-world

remote:

To gitlab.in2p3.fr:<your-id>/GRANDMA.git

 * [new branch] feature/Issue-#1-create-hello-world -> feature/Issue-#1-create-hello-world

Branch 'feature/Issue-#1-create-hello-world' set up to track remote branch 'feature/Issue-#1-create-hello-world' from 'origin'.

Already on 'feature/Issue-#1-create-hello-world'

Your branch is up to date with 'origin/feature/Issue-#1-create-hello-world'.

Summary of actions:

- The remote branch 'feature/Issue-#1-create-hello-world' was created or updated

- The local branch 'feature/Issue-#1-create-hello-world' was configured to track the remote branch

- You are now on branch 'feature/Issue-#1-create-hello-world'

You may want to publish your ongoing feature branch before finishing it. Typically if you want to

discuss some difficulties or choices in a Work In Progress [WIP] Merge Request …

TL;DR:

1. Go to https://gitlab.in2p3.fr/GRANDMA/GRANDMA

2. Press Create Merge Request button, on the right.

3. Fill in an exhaustive description.

4. Verify that the selected source branch: GRANDMA/GRANDMA is the branch containing your

changes feature/Issue-#1-create-hello-world .

Verify that the target branch is the develop branch.

5. Ask for "Remove source branch when merge request is accepted."

6. Press Submit Merge Request button.

Publishing workflows

Publishing a feature branch

Creating a Merge Request

18 Nov 2018

6 / 13

Details:

1. Go to https://gitlab.in2p3.fr/GRANDMA/GRANDMA

You will see at top of the display:

You pushed to feature/Issue-#1-create-hello-world at GRANDMA / GRANDMA 1 minute ago

1. Press Create Merge Request button, on the right.

You will arrive on a "New Merge Request" page.

1. Fill in an exhaustive description.

You can change the title and fill in the description area in order to describe at best the work done

with this MR.

Choose too one or more "Labels" to help the MR categorization and list.

You can select a reviewer in the "Assignee" pop-up.

2. Verify the source branch and the target branch.

The target branch should always be the develop branch. You can correct, il needed, clicking

on Change branches .

3. Ask for "Remove source branch when merge request is accepted."

4. Press Submit Merge Request button.

Check your commits and changes, then submit.

Once the Merge Request opened, you may need to update your development in order to take

Updating the feature branch

18 Nov 2018

7 / 13

remarks or requests into account. So you can resume your work session, continue the coding session

and commit:

$> git flow feature checkout 'Issue-#1-create-hello-world'

$> … edition …

$> git add hello-world.cc

$> git commit -m 'Add some awesome variants - Fixed #1'

And eventually publish your work in order to inform the discussion:

$> git flow feature publish 'Issue-#1-create-hello-world'

If you go to your Merge Request on

https://gitlab.in2p3.fr/GRANDMA/GRANDMA/merge_requests/<your-mr-number, you will see your last

commits included in the Merge Request.

Scenario:

You forked the GRANDMA repository some time ago.

Time passes.

There have been new commits made in upstream GRANDMA repository.

Your forked GRANDMA repository is no longer up to date.

You now want to update your forked GRANDMA repository to be the same as upstream.

Solution:

$> git checkout develop

$> git pull --rebase origin develop

$> git flow feature checkout 'Issue-#1-create-hello-world'

$> git flow feature rebase

$> git flow feature publish

The --rebase is only needed if you have local changes to the develop branch.

Syncing with upstream

18 Nov 2018

8 / 13

This documentation part is only for mainteners … To be written …

Deployment workflow

Merging code into master

Adding a tag version

18 Nov 2018

9 / 13

Note

Never commit directly to the master branch. Avoid to commit directly to the develop branch.

Create a new branch and switch to it:

creates a new branch off 'feature/current-feature' and switch to it

$> git checkout -b <branch-name> feature/current-feature

This is equivalent to:

create a new branch off 'feature/current-feature', without checking it out

$> git branch <branch-name> feature/current-feature

check out the branch

$> git checkout <branch-name>

Or using gitflow extension:

$> git flow feature <branch-name> feature/current-feature

To find out which branch you are in now:

$> git branch

Or to list existing feature branches:

$> git flow feature list

The current branch will have an asterisk next to the branch name. Note, this will list all of your local

branches.

To list all the branches, including the remote branches:

$> git branch -a

To switch to a different branch:

$> git checkout <another-branch-name>

To delete branch that you no longer need:

$> git branch -D <branch-name>

1. To show the current changes:

$> git status

Git essentials

Creating and switching branches

Delete local branch

Staging and committing files

18 Nov 2018

10 / 13

To see everything unstaged diffed to the last commit:

$> git diff

1. To stage the files to be included in your commit:

$> git add path/to/file1 path/to/file2 path/to/file3

To see everything staged diffed to the last commit:

$> git diff --cached

To see everything unstaged and staged diffed to the last commit:

$> git diff HEAD

1. To commit the files that have been staged (done in step 2):

$> git commit -m "This is the commit message."

To revert changes to a file that has not been committed yet:

$> git checkout path/to/file

If the change has been committed, and now you want to reset it to whatever the origin is at:

$> git reset --hard HEAD

To stash away changes that are not ready to be committed yet:

$> git stash

To re-apply last stashed change:

$> git stash pop

Reverting changes

Stashing changes

18 Nov 2018

11 / 13

Rebasing can be used to edit a commit message or to consolidate a collection of commits into a single

commit. This is done by 'squashing' all non-desired commits.

$> git flow feature rebase -i 'Issue-#1-long-coding-session'

Will try to rebase 'Issue-#1-long-coding-session' which is based on 'develop'..

The interactive rebase (-i) edition will look something similar to:

pick 11c45c2 Reformulate pick 5e56ccf Add index on workflow pick d549e59 Clean up wrong

sentence pick 2bd1c51 Improve workflow introduction pick 2f550fa Complete finishing feature section

Rebase be16b12..2f550fa onto be16b12 (5 commands)

#

Commands:

p, pick = use commit

r, reword = use commit, but edit the commit message

e, edit = use commit, but stop for amending

s, squash = use commit, but meld into previous commit

f, fixup = like "squash", but discard this commit's log message

x, exec = run command (the rest of the line) using shell

d, drop = remove commit

#

These lines can be re-ordered; they are executed from top to bottom.

#

If you remove a line here THAT COMMIT WILL BE LOST.

#

However, if you remove everything, the rebase will be aborted.

#

Note that empty commits are commented out

Let say we want to improve the first commit message and merge the second with the forth. We will

edit the rebase this way:

reword 11c45c2 Reformulate

pick d549e59 Clean up wrong sentence

pick 5e56ccf Add index on workflow

squash 2bd1c51 Improve workflow introduction

pick 2f550fa Complete finishing feature section

Rebase be16b12..2f550fa onto be16b12 (5 commands)

#

Commands:

p, pick = use commit

r, reword = use commit, but edit the commit message

e, edit = use commit, but stop for amending

s, squash = use commit, but meld into previous commit

f, fixup = like "squash", but discard this commit's log message

x, exec = run command (the rest of the line) using shell

d, drop = remove commit

#

These lines can be re-ordered; they are executed from top to bottom.

#

If you remove a line here THAT COMMIT WILL BE LOST.

#

However, if you remove everything, the rebase will be aborted.

#

Note that empty commits are commented out

When we're done, we save and exit. If we look at our git-log output, it should have condense our

feature branch into a simpler, more logical and descriptive one.

Advanced Git

Interactive rebase

18 Nov 2018

12 / 13

18 Nov 2018

13 / 13

