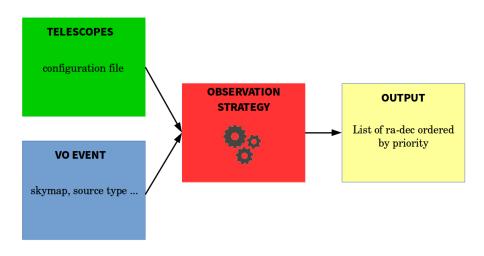
Observation strategy


Ducoin Jean-Grégoire Coughlin Michael

Université Paris sud Laboratoire de l'Accélérateur Linéaire GRANDMA

Section 1

Context

Section 1

Starting point : a large set of telescopes

GRANDMA telescopes

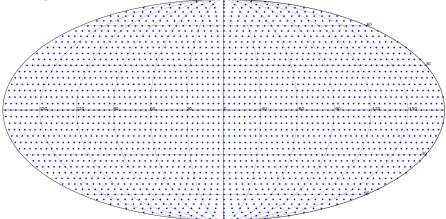
Different type of alerts

- Gravitational Waves
- Gamma Ray Bursts
- Neutrinos

	Section 1
For a given telescope : Config file	
• Field of view	filt r magnitude 14.6 exposuretime 10.0 latitude 43.9330
• magnitude	longitude 5.7147 elevation 648 FOV_coverage 0.4 FOV 0.4
• position (longitude-latitude)	FOV_coverage_type square FOV_type square tesselationFile/input/IRIS.tess slew_rate 10 readout 8.4
•	

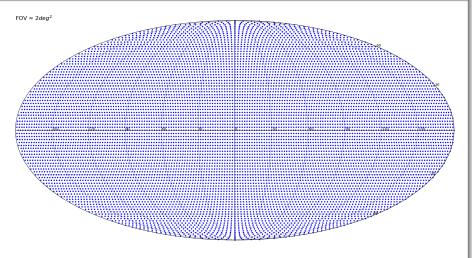
First step : Creation of the tessellation

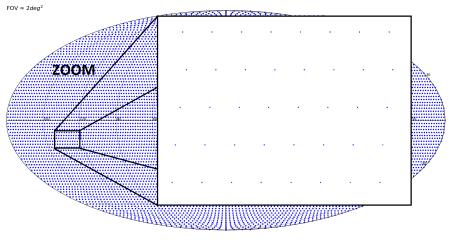
https://github.com/mcoughlin/gwemopt


Pre-tiling of the sky (if no known survey tiles)

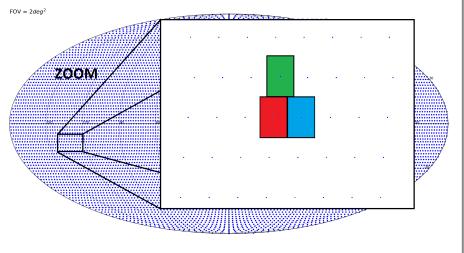
• The whole sky is pre-tiled with the telescope field of view

Section 1


Example for TAROT Réunion - get the points


Each point is the center of an tile (FOV)

Example for SVOM-F30 - get the points

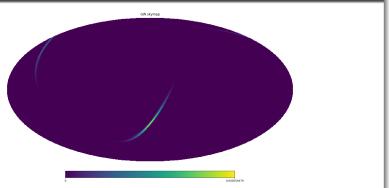

Each point is the center of an tile (FOV)

Example for SVOM-F30 - get the points

Each point is the center of an tile (FOV)

Example for SVOM-F30 - get the tiles

We get the tiles using Healpix to get all the pixels inside each one


For a given event \Rightarrow scheduling the observation

For a given telescope provide a list of tile ordered by priority \Rightarrow we need to define a metric (weight) to order the tiles

How to do that?

First idea : Brute force

Example : GW skymap

We use the position probability distribution of an event to order the tiles by the probability they contain

Second idea : Galaxies targeting

Galaxies targeting

hypothesis : the source is inside a galaxy

- choice of catalog ⇒ GLADE (http ://aquarius.elte.hu/glade/) The catalog has been constructed (combined and matched) from four existing galaxy catalogs : GWGC, 2MPZ, 2MASS XSC and HyperLEDA. GLADE contains 3,262,883 objects. Widely used during O2 for the follow-up
- Selection in the catalog of the galaxies compatibles for a given 3D volume : RA, Dec, distance (if available : BNS/BBH for GW)

What to do with the galaxies?

• rank the tile in function of the number of the galaxies inside

Add some physics?

- define a metric (weight) to put on each galaxies
 - \rightarrow the tile weight is so the sum of the galaxies weight inside the tile

How to define the weight?

Only few informations are available on GLADE catalog... What is available yet (from LCOGT metric) :

- the skymap probability
 - \rightarrow angular position + distance
- the blue luminosity (as an indicator of mass)
- likelihood of detection (assuming an max/min luminosity for the event)

http://iopscience.iop.org/article/10.3847/2041-8213/aa910f/meta

Work in progress

Work on building a better definition of the weight

Is the LCOGT metric improvable?

There is still some informations available that are not used

- $\bullet\,$ red luminosity in GLADE
- sub-catalog informations (ex : GWGC give the galaxy type)
- separate different metric definitions for the type of the source (BNS, BBH, Burst ...)
- ...

Choice of the catalog

galaxies targeting strategy \Rightarrow careful on the choice of the catalog

- completeness
- fiability of the informations

Work in progress

Work on the tessellation

Go more in details on the tessellation building

- define the overlap between each tiles
- define a little tile shift for optimization?

O4 and further

Work on the SVOM-MXT tessellation satellite \Rightarrow system restrictions

- restrictions on the tessellation (ex : put a galaxy in the SVOM-VT FOV)
- restrictions on the scheduler (slew limitation, Sun-Moon-Earth obstruction ...)

• ...

THANKS!