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1 Introduction

The following text is extracted from a longer article in the making. Its aim
is to show how one can calculate the production rate, decay rate and angular
distribution of the decay products of a hypothetical ”heavy neutrino” (or
heavy neutral lepton, often abbreviated HNL in the following) with the
couplings of an ordinary neutrino to standard model particles, up to a (very
small) mixing matrix element. It is aimed at experimental groups wishing to
evaluate the sensitivity of their apparatus to such heavy neutrino production
and decay through simulation. Masses have to be taken into account at
every stage of the production/decay process since, for example, the well
known helicity suppression of νe production in two-body 0− mesons decays
no longer works when the neutrino is hypothetized to have a mass of a few
MeV. Also, polarization of the neutrino must be taken into account because
it bears on the angular distribution of its decay products and therefore
on the acceptance of the experimental set-up to a given combination of
mass and mode. Most results given here can probably be found in the
litterature, see e.g. [1, 2, 3] but they are scattered among many experimental
or theoretical papers, which is why we think this one might have some
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usefulness. Moreover, some of these papers contain errors, see e.g. [4],
which we came across while trying to help a young experimentalist colleague
preparing his thesis [5].
We will therefore give fairly complete derivations so as to allow anyone with
a minimal litteracy in Dirac algebra to check our results. We apologize in
advance to the many people who published such or such formula for not
quoting them. It is a task beyond our capacity and anyway, quite useless in
a work of this kind.
The present extract is devoted to ”heavy neutrino” production by decay
of charged 0− mesons and is restricted to 2-body (0− charged meson plus
charged lepton) and the simplest 3-body not involving neutral currents (non
self-conjugate charged lepton pair plus light neutrino).

2 Generalities - effective lagrangian

Neutrino states related to charged leptons through weak charged currents
are thought to be linear combinations of mass eigenstates. The mechanism
giving rise to these combinations is not known, but given the successes of
”standard” physics, we assume that the interaction lagrangian is that of the
Standard Model, namely:

Lint = eAαJemα +
g

cosθw
ZαJneutα +

g√
2

(Wα†Jchα +WαJch†α )

1 where:

Jchα =
∑

β=e,µ,τ

νβγαPLlβ + quark currents

Jneutα =
∑
f

fγα(PLT 3
w − sin2θwQ)f

Jemα =
∑
f

fγαQf

• f is any elementary fermion field, νβ and lβ stand for the neutrino and
charged lepton fields of ”flavour” β (= e, µ, τ).

1Einstein’s summation convention is used thourough for space-time indices

2



• T 3
w and Q are the third weak isospin component and electric charge

operators.

• PL = 1
2(1− γ5) is the left-handed projector.

• g = e
sinθw

νβ’s are assumed to be linear superpositions of fields corresponding to
definite mass quanta which can be either Dirac or Majorana. The notation
will be as follows:

νβ =
∑
h

UβhNh

where Nh represents the field of a neutrino of mass µh. Greek indices will
be used for leptonic ”flavours” and latin indices for definite mass fields.
It is known that there must exist three different light masses, but in the
following, we will assume that there is at least an extra ”heavy neutrino”
(Heavy neutral lepton or HNL henceforth) . U is therefore a rectangular
extension of the PMNS mixing matrix.

The processes of interest are at low energies and will always involve
virtual W and Z’s. Therefore, they will be at least second order in Lint.
Neglecting q2 w.r.t. m2 in the bosons propagators written in momentum
space, one finds the effective lagrangian:

Leff =
4GF√

2
(Jneut,αJneutα + Jch,αJch†α ) (1)

with GF√
2

= g2

8M2
W

in tree approximation.

In the following, we shall note j for a leptonic current and J for a
hadronic current.

3 Production through 2-body 0− charged mesons
decay

The relevant part of the effective lagrangian is here:

4GF√
2

(jch,αJch†α + h.c.)
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From now on, we assume a M+ (momentum P , mass M) decaying to HNL
Nh (momentum pN , mass µ), and antilepton l+ of ”flavour” β (momentum
pl mass m). M+ being spinless, the only vector available to parametrize
the hadronic current matrix element is its 4-momentum Pα.2 Introducing
M+ ’decay constant’ fM and using Lorentz invariance one makes the usual
ansatz for the current matrix element:

< O|Ach α †(x)|M+ >= ifMV..e
−iP ·xPα

where V.. is the relevant CKM matrix element for M+ →W+∗ 3.

The leptonic current matrix element for producing a state Nh of defi-
nite mass µ and 4-momentum pN together with a charged antilepton β+ of
flavour β mass m and 4-momentum pl is:

< β+ Nh|
∑
k,δ

U∗δkNkγαPLlδ(x)|O >= U∗βhu(Nh)γαPLv(β)ei(pl+pN )·x

so that the transition matrix element for M+ → Nhβ
+ will be:

−i
√

2GF fMU
∗
βhV..u(Nh)/P (1− γ5)v(β) 4

This result is obviously independant of the Dirac or Majorana nature of
the Nh field.

As said in the introduction, we will give here a complete derivation. We
only assume that the reader knows how to calculate traces of products of
Dirac algebra matrices. Our way of calculating the HNL polarization vector
and using it in the second decay is inspired by [6]

1. using P = pN + pl and the Dirac equations:

ū/pN = µū and /plv = −mv

simplify the matrix element to −iκū(α− γ5β)v
where κ =

√
2GF fMU

∗
βhV.., α = µ−m , β = µ+m

2Further notice that only the axial part of the hadronic current can have a non zero
matrix element between a pseudoscalar state and the hadronic vacuum.

3W+∗ is an off-shell W+

4 /P stands for Pαγα (Feynman ’s notation.)
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2. multiply the m.e. by its complex conjugate:

κ2ū(α− γ5β)vv̄(α+ γ5β)u

= κ2 Tr(uū(α− γ5β)vv̄(α+ γ5β)

3. sum over antilepton polarizations, which amounts to the replacement:

vv̄ → (/pl −m).

4. In order to calculate the HNL polarization, keep its full density matrix
for both momentum and spin:

uū→ (/pN + µ)12(1 + γ5/s)

where s is the HNL polarization 4-vector which reduces, in the rest
frame, to (0,P) with P the usual polarization 3-vector for spin 1/2,
i.e. twice the spin expectation value.

5. the squared m.e. thus becomes:

κ2 Tr (/pN + µ)12(1 + γ5/s)(α− γ5β)(/pl −m)(α+ γ5β)

6. Calculate the trace. Using again 4-momentum conservation, this yields:

1/4 Tr = M2(m2 + µ2)− (m2 − µ2)2 + 2µ(µ2 −m2)s · pl (2)

• To calculate the rate, sum over HNL spin states by replacing s → 0
and multiplying by 2.

Adding normalization and phase-space factors, one gets the width:

Γ(M+ → β+Nh) =
G2
F f

2
M |V..|2|Uβh|2

8πM

(
m2 + µ2 − (m2 − µ2)2

M2

)
λ1/2(M2,m2, µ2)
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where M,m,µ are the masses of M+, β and Nh respectively and λ is
the usual kinematical function

λ(x, y, z) = x2 + y2 + z2 − 2(xy + yz + zx)

By letting µ→ 0 (and forgetting about U) one retrieves the ordinary
well known formula for decay into an antilepton and a standard model
massless neutrino.

Γ =
G2
F f

2
M |V..|2

8π
Mm2(1− m2

M2
)2 (3)

which, being proportionnal tom2, explains the tiny ratio Γ(e+ν)/Γ(µ+ν),
due to helicity conservation by V and A vertices in the ultra-relativistic
limit. For the domain envisioned here (µ ≥ a few MeV) the sup-
pression no longuer works and both modes acquire the same order of
magnitude modulo the coefficients |Uβh|

• To find the HNL polarization:

The squared m.e.(cf. 2) is proportionnal to the probability of finding
4-polarization s and must therefore be equal to Tr(ρρf ) (with ρf the
true HNL polarization matrix) up to a factor.
In the rest frame, ρ reduces to 1 + σ ·P with σ the Pauli matrices
and P the polarization 3-vector, so that the expression obtained is
proportionnal to Tr (1 + σ ·P)(1 + σ ·Pf ) or to 1 + P ·Pf

By expliciting the proportionality of this last expression with (2) writ-
ten in the HNL rest frame, we find the following for the HNL polar-
ization vector to be used when simulating its decay:

P =
(m2 − µ2)λ1/2(M2,m2, µ2)

M2(m2 + µ2)− (m2 − µ2)2
n̂ = Pn̂ (4)

where n̂ is a unit vector in the direction of the parent meson or of the
decay lepton in the Nh rest frame and the second equality defines P.
Although the formula obtained by the authors of [4] is not given in
their paper, it is readily seen graphically (compare with fig. 1)that
it must coincide with our above result for the case where the initial
particle is a charged kaon decaying into muon and HNL. In particular,
it is seen from the graph (fig. 1) or formula (4), that if the HNL mass
µ coincides with the muon mass, its polarization vector is zero. The
graph or formula (4) also show that when µ → 0, the coefficient of n̂
→ 1 that is, the massless neutrino will be pure −1 helicity.
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Figure 1: Polarization of HNL produced in K+ → HNL+µ+ as a function of HNL
mass. It is seen that when the latter coincides with the muon mass, the polarization
vanishes

4 Two-body HNL decay into 0− meson and lepton

These are crossed channels of those envisionned above for production. Am-
plitudes are trivial to write; in the ’charged’ case, one finds e.g., for a decay
into π+, l−:
(Here k, q and p are the 4-momenta of Nh( mass µh), l− (mass ml flavour γ)
and π+ (mass mπ) so that k = p+ q)

ANh→π+l− = −iGF√
2
fπVu,dUh,γ ū(l)/p(1− γ5)u(Nh)

Using Dirac equation, one gets:

ANh→π+l− = −iGF√
2
fπVu,dUh,γ ū(l)(α+ βγ5)u(Nh)

with α = µh −ml and β = µh +ml
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Squaring, summing over l polarizations and introducing the HNL polar-
ization matrix with polarization 4-vector s one gets:

|A|2 =
G2
F

2
f2π |Uh,γ |2|Vu,d|2 Tr (/q +ml)(α+ βγ5)(/k + µh)

1

2
(1 + γ5/s)(α− βγ5)

Calculating the trace, one gets

1/4 Tr = (α2 + β2)q · k + 2µhαβq · s+mlµh(α2 − β2)

= 2(µ2h +m2
l )q · k + 2µh(µ2h −m2

l )q · s− 4m2
l µ

2
h

= (µ2h −m2
l )

2 −m2
π(µ2h +m2

l ) + 2µh(µ2h −m2
l )q · s 5

= (µ2h −m2
l )

2 −m2
π(µ2h +m2

l )− 2µh(µ2h −m2
l )q ·P

in the Nh rest frame, therefore:

|A|2 = G2
F f

2
π |Uh,γ |2|Vu,d|2[(µ2h −m2

l )
2 −m2

π(µ2h +m2
l )− 2µh(µ2h −m2

l )q ·P] (5)

With phase space (integrated over the angles) equal to |q|
4πµh

or
λ1/2(µ2h,m

2
l ,m

2
π)

8πµ2h
we find for the rate:

Γ(Nh → l−π+) =
G2
F f

2
π

16πµ3h
{(µ2h−m2

l )
2−m2

π(µ2h+m2
l )}λ1/2(µ2h,m2

l ,m
2
π)|Uh,γ |2|Vu,d|2

If γ = e , ml can be neglected and this becomes:

G2
F f

2
π

16π
µ3h

(
1− m2

π

µ2h

)2

|Uh,e|2|Vu,d|2

The angular distribution is non isotropic due to polarization (cf. (4)) as
shown by (5)

Normalizing formula (5) in such a way that the constant term be equal
to 1/2 (so that the integral over cos (n̂, q̂) equals 1 ) we get:

dN

d cos θ
= 1/2− 1/2

µ2h −m2
l

(µ2h −m2
l )

2 −m2
π(µ2h +m2

l )
λ1/2(µ2h,m

2
l ,m

2
π)P cos θ

5We have used 2q · k = µ2
h +m2

l −m2
π
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θ = (n̂, q̂) is the angle between the recoil lepton direction (n̂) in the
parent’s decay M+ → HNL + β+ and the secondary lepton direction (q̂)
from HNL decay seen in the HNL rest frame. P has been defined in (4).
It is clear that, contrary to formula (16) of ref.[4] the HNL decay is isotropic
when its mass equals that of the lepton recoiling against it in the parent’s
decay. This formula is incoherent on different other grounds, making, for
example, no distinction between the c.o.m. momenta in the HNL-generating
meson two-body decay and the HNL two-body decay itself.

4.1 A pedagogical remark

It is interesting to note that the heavy neutrino which is in general only
partially polarized is NOT a quantum mechanical linear superposition of
helicity 1 and helicity -1 states contrary to what is stated in many places
(see e.g. [7]). Since its polarization vector modulus is not one, there is no
direction in which a spin measurement will yield 1/2 with certainty and this
system, which is in a mixed state, cannot be represented by a wave function.
Although the spin 0 initial meson can be thought of as being in a pure state,
the HNL, being but a subsystem of the -evolved- initial state can only be
represented by a density matrix (see e.g.[8])

5 Decay into a light neutrino and a non charge-
conjugate lepton pair (β− β′+ ν)

5.1 Decay matrix element

For a Dirac HNL and in tree approximation, the decay takes place through:

Nh → β−W+∗ → β−β
′+νβ′

It is only the β component of Nh that contributes to the first vertex so
that a factor of U∗β,h enters the matrix element at this level. For the final
state with a charged lepton of flavour β′, the final neutrino has also flavour
β′. Obviously, for kinematical calculations we will consider it to be massless
and no mixing matrix elements need to be introduced here.
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On the other hand, if neutrinos are Majorana particules, the following
is also possible:

Nh → β
′+W−∗ → β

′+β−νβ

which, although the final light neutrino is of a different flavour, cannot be
practically distinguished from the above described process in a heavy neu-
trino search experiment. 6 As above, this final neutrino mass is neglected.
Moreover, since the final neutrino flavours are different in the two processes,
no interference between the amplitudes has to be considered. Clearly, neu-
tral currents play no role here.

The relevant part of the effective lagrangian is now :

L′ = 4GF√
2

∑
kk′αα′

UαkU
∗
α′k′ lαγ

µPLNkNk′γµPLlα′

If the Nh are Dirac fields, the transition amplitude is simply:

4
GF√

2
Uβhuβγ

µPLuhuνβ′γµPLvβ′

here u’s and v’s are Dirac spinors and PL is the projector on their left-
handed part.
In conformity with the remark made about the final state neutral lepton,
the U∗β′k′Nk′ sum has been replaced by the sole uνβ′ standing for a standard

model neutrino of flavour β′ produced together with the β′+ charged anti-
lepton.

For the Majorana case, there will be the extra piece:

4
GF√

2
U∗β′huβγ

µPLvνβvhγµPLvβ′

with an analogous remark for the absence of final neutrino mixing matrix
element and for the spinor vνβ which stands now for the light neutrino of
flavour β produced together with the β-flavoured charged lepton.

6Neutrino fields are assumed to be Majorana’s here, therefore the notation νβ can be
taken as indicating the right-handed part of the νβ field quantum.
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We now Fierz-transform these amplitudes so as to render both first fac-
tors equal, getting:

−4
GF√

2
Uβhuβγ

µPLvβ′uνβ′γµPLuh

and

−4
GF√

2
U∗β′huβγ

µPLvβ′vhγµPLvνβ

and we use the relation

vhγ
µ(1− γ5)vl = ulγ

µ(1 + γ5)uh

in order to have (almost) the same spinors sandwiching the second factors:
indeed, l stands for β or β′ which correspond to orthogonal states, but math-
ematically the spinors are the same.

5.2 Differential distribution

This being done, the two amplitudes can be added, yielding:

−2
GF√

2
uβγ

µPLvβ′ulγµ((Uβh + U∗β′h)− (Uβh − U∗β′h)γ5)uh

where it is understood here that since β 6= β′ interference terms (con-
taining products like UβhU

∗
β′h) are to be cancelled in the end.

To simplify let Uβh + U∗β′h = α , Uβh − U∗β′h = β. Squaring the above
expression, we get:

2G2
Fuβγ

µPLvβ′vβ′γνPLuβulγµ(α− βγ5)uhuhγν(α∗ − β∗γ5)ul
which we rewrite, summing over final polarizations and introducing the HNL
density matrix:

2G2
F Tr ((/p− +mβ)γµPL(/p+ −mβ′)γ

νPL) Tr (/qγµ(α− βγ5)(/k + µh)
1

2
(1 + γ5/s)γν(α∗ − β∗γ5))

where k, p−, p+, q, s are the 4-momenta of Nh, β
−, β′+, νl and the Nh 4-

polarization. µh, mβ and mβ′ are the masses of Nh and of the two charged
leptons. Taking the traces and contracting the Lorentz indices then yields:

64G2
F (|Uβh|2q · p−(k − µhs) · p+ + |Uβ′h|2q · p+(k + µhs) · p−) (6)
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It is seen that no spurious interference terms need to be cancelled ex-
plicitly.

The last expression can easily be transformed to:

64G2
Fµ

2
h(|Uβh|2(E∗+ − E+)(E+ + P · p+) + |Uβ′h|2(E∗− − E−)(E− −P · p−)) (7)

here: E∗∓ = (µ2h ±m2
β ∓m2

β′)/(2µh) and E∓ , p∓ are β− and β′+ energies
and 3-momenta in the decaying HNL rest-frame and P is its 3-polarization
vector as calculated in Part I.

The three-body final state phase space depends on five variables only
which can be taken, in the HNL center of mass frame, as E+, E− and three
angles defining the final state orientation. By energy-momentum conserva-
tion, the three final momenta are coplanar in this frame and the angle θ+−
between p+ and p− is fixed once E+ and E− are given 7. One can then
choose the polar angles of p+ with respect to the HNL parent direction n̂,
which is itself parallel to P (see (4)), call them θ+ and φ+ and the angle of
the decay plane around p+ , say Φ, to completely define the final state. In
order to use formula (7), one only needs the cosine of the angle of p− and
n̂ which is found to be

cos θ− = cos θ+ cos θ+− + sin θ+ sin θ+− cos Φ (8)

by a standard spherical trigonometry formula (see e.g. [9]) in the spherical
triangle defined by (n̂,p+,p−)

Note that (7) is valid for a Majorana neutrino. For a Dirac neutrino
going to β−, β

′+, the second term must be dropped and conversely, the first
term must be dropped for a Dirac anti-neutrino decaying into the same
charged channel.

This result is again very different from those of [4], which nowhere gives
the full differential decay distribution necessary for a proper simulation.
Observe however, that in order to use formula (7) to estimate the accep-
tance of the apparatus to the channel studied, some estimate of the ratio
|Uβh|2/|Uβ′h|2 will have to be used.

7One finds: 2p+p− cos θ+− = µ2
h +m2

+ +m2
− − 2µh(E+ + E−) + 2E+E−
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5.3 Decay width

Practically, since β 6= β′, one has e.g. mβ = me � mµ = mβ′ so that mβ

will be neglected.

With this approximation, the width can be analytically integrated with
the results:

Γ =
G2
Fµ

5
h

192π3
{
|Uβh|2 + |Uβ′h|2

}
f(r) (9)

Here: r = (mβ′/µh)2 and f(r) = (1− 8r + r2)(1− r2)− 12r2Log(r)

(9) is valid for Majorana’s neutrinos. The remarks already made above
concerning the Dirac case apply.

For neutrinos produced by pions or kaons decays, the only kinemati-
cally allowed case is µ∓e±νl. Therefore, the channel Nh → µ−e+νl yields a
measure of |Uµh|2 for Dirac neutrinos and Nh → µ+e−νl measures |Ueh|2.
For Dirac anti-neutrinos, the channels are permuted. Lastly, for Majorana
neutrinos, the sum |Uµh|2 + |Ueh|2 is measured by either channel.
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