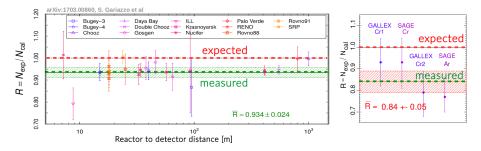
Latest results from the STEREO experiment : a search for sterile neutrino ${\sim}1\text{eV}$ at ILL

Laura Bernard LPSC, Grenoble, France

on behalf of the Stereo collaboration



Motivations: $\bar{\nu_e}$ disappearance

Reactors

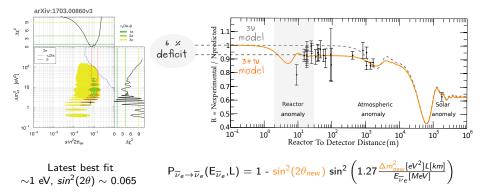
Two compatible anomalies:

• Reactor Antineutrino Anomaly

All reactor short-baseline experiments are observing a deficit

 \rightarrow confirmed by recent accurate measurements from Daya Bay, RENO & Double Chooz)

• Sources Anomaly


 $\beta\text{-emitters}$ sources used for solar experiments calibration in Gallex & Sage experiments show deficit

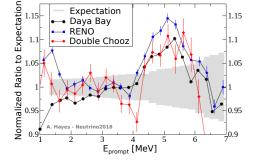
Phys.Rev.D83:073006 (2011)

Suggested oscillation parameter space

3+1 scenario fits better the experimental data points

 \rightarrow First oscillation occuring at very short baseline (<10 m)

Several experiments revealed a "bump" around 5 MeV w.r.t prediction spectra


- Could be linked to underestimation of certain isotopes of Uranium/Plutonium
- Can not explain the total deficit

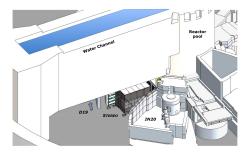
- Global flux deficit (sterile ν hypothesis)
- Spectral distortions
- ... other recent issues

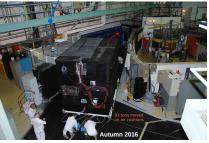
Need dedicated measurements to:

- Confirm or rule out sterile ν hypothesis
- Constrain the $\bar{\nu_e}$ energy spectra

A quest for a sterile neutrino in the eV range

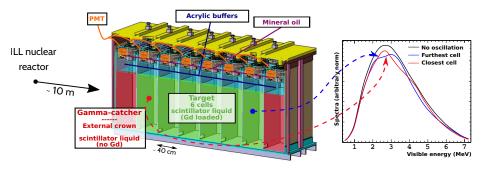
Several experiments with different sources and detection methods...


- Segmented or movable (Independant from predicted spectra)
- HEU (High Enriched Uranium 235) = experimental cores
- LEU (Low Enriched Uranium 235) = commercial cores


Experimental site ILL research facility, Grenoble, France

- Research reactor core $\sim 58\,{\rm MW}_{th}$ $\rightarrow 10^{19}~\bar{\nu}_e~s^{-1}$
- ✓ Compact core (40cm Ø)
- ✓ Highly enriched ²³⁵U
- \checkmark Short baseline measurement: $8.9m < L_{core} < 11.1m$

Water channel 15 mwe overburden


 \times **Surface-level** experiment (BUT 15 m.w.e only thanks to water channel)

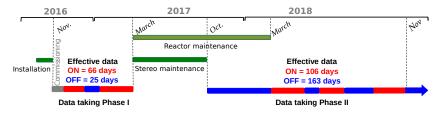
 $\times~\gamma$ and neutron background from neighboring experiments

The STEREO experiment

arXiv:1804.09052 (2018)

Designed to:

1- Probe the RAA region by measuring relative distortions of the $\bar{\nu}_e$ energy spectrum as a function of the distance [9-11m]


✓ Independent from predicted energy spectrum (norm. + shape)

- 2- Provide a measurement of a pure ²³⁵U $\bar{\nu_e}$ energy spectrum
 - \checkmark Confirm origin of 5 MeV bump w.r.t ^{235}U

Data taking

Stereo is running since Nov. 2016

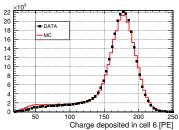
Phase-I:

- Loss of optical coupling between PMTs and target for one target and on GC cell
- Evolving light cross-talks between cells
 - ightarrow repaired during summer 2017

Phase-II:

• Stable conditions

Physics runs: $\sim 95\%$ of data taking time


Detector response

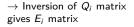
Events / 4 PE

arXiv:1804.09052 (2018)

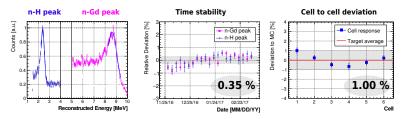
- Monitoring of liquids/electronics: Automatic daily LED measurement: PMT gain, liquid stability, electronics linearity
- Monitoring of the energy response: On a weekly basis: internal and external calibrations using radioactive sources Ge⁶⁸, Sb¹²⁴, Cs¹³⁷, Mn⁵⁴, Zn⁶⁵, Na²⁴, H¹(n, γ)
- Monitoring of the neutron capture: Using dedicated AmBe source

 \rightarrow Tuning of the MC simulation of the detector: Light collection, liquid properties, non linearity (k_b)

Good agreement MC/data (Mn⁵⁴)


Energy reconstruction

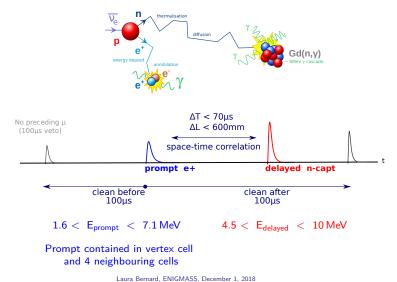
arXiv:1804.09052 (2018)


- Charge in a given cell Tool developped to take into account:
 - Light collection loss
 - Evolving light leaks along time

$$Q_i = \sum_{j=cells} E_j C_j L_{ji}$$

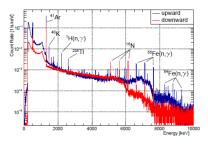
Collected photons/MeV from calib runs Light cross-talk between cells Measured online + calib

• Stability of the reconstructed n-H & n-Gd peaks (whole target volume) and deviation to MC


Laura Bernard, ENIGMASS, December 1, 2018

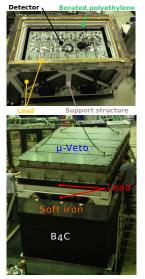
$\bar{\nu}_e$ signal selection

Inverse Beta Decay reaction \rightarrow correlated pair



10/19

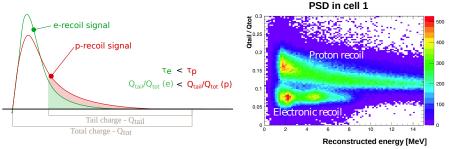
Shielding against background


Extensive campaigns of characterization of neutron and γ sources before shielding design:

Two types of backgrounds

- Accidental background:
 - \checkmark removed by statistical subtraction
- Correlated background:
 - \checkmark reduced by shielding and $\bar{\nu_e}$ selection

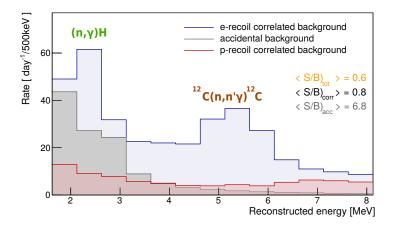
X Counterpart of so much shielding: atmospheric muons spallation producing fast neutrons


Muons induced background (Prompt + Delayed):

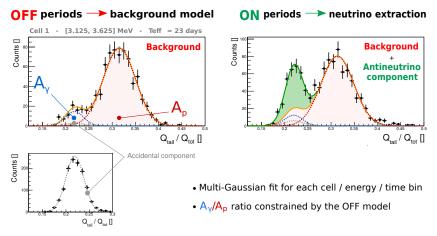
- Fast neutrons
 Prompt: proton recoil
- Multiple neutron captures Prompt: 2.2 MeV γ or a 8 MeV γ cascade from n-capt
- $^{12}{\rm C(n,n'\gamma)^{12}C}$ reactions Prompt: mixing between 4.4 MeV γ and proton recoil

Pulse Shape Discrimination for prompt signal

• Stopping muons


Prompt: μ stop Delayed: Michel e^{+/-} \checkmark Mainly rejected by asymmetry based cut

Laura Bernard, ENIGMASS, December 1, 2018



Prompt energy spectrum under neutrino component

$\bar{\nu}_e$ signal extraction from PSD distributions (OFF & ON)

$\bar{\nu_e}$ are extracted per time bin of 2 weeks

- No assumption on PSD stability (temperature sensitivity)
- No assumption on global norm (pressure sensitivity)

Ratio method:

Compare ratios of energy distributions - cell 1 taken as reference of measured $(R_{i,j}^{Data})$ and simulated $(R_{i,j}^{MC})$ spectra.

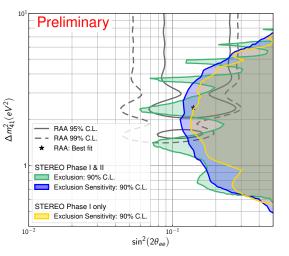
- Insensitive to absolute flux normalization
- Insensitive to predicted spectrum shape

$$\chi^{2} = \sum_{i=1}^{N_{\text{Ebins}}} \left(\overrightarrow{R_{i}^{\text{Data}}} - \overrightarrow{R_{i}^{\text{MC}}}(\alpha) \right)^{t} V_{i}^{-1} \left(\overrightarrow{R_{i}^{\text{Data}}} - \overrightarrow{R_{i}^{\text{MC}}}(\alpha) \right) + \sum_{j=1}^{N_{\text{Cells}}} \left(\frac{\alpha_{j}^{\text{Norm}}}{\sigma_{j}^{\text{Norm}}} \right)^{2} + \sum_{j=0}^{N_{\text{Cells}}} \left(\frac{\alpha_{j}^{\text{Escale}}}{\sigma_{j}^{\text{Escale}}} \right)^{2}$$

 V_i is the **covariance matrix** of the 5 ratios (common reference for each cell) for the energy bin i $\{\alpha\}$ are nuisance parameters to take into account estimated systematics

Null hypothesis testing ($\Delta \chi^2$):

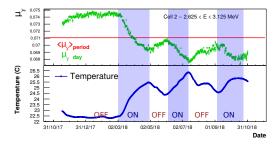
• Non-oscillation hypothesis (H₀) can not be rejected: p-value = 34 % (40 %) for phase-I (phase-I+II)


Oscillation analysis

arXiv:1806.02096 (2018)

Exclusion contours Phase-I+II combined ($\Delta \chi^2$):

- $\Delta\chi^2$ distributions estimated by MC pseudo experiments
- Raster-scan approach (Δ_m^2 slices)
- Phase-I + Phase-II combined results (66+47) days reactor-ON (396 ± 4) $\bar{\nu}_e$ day⁻¹
 - X Considered as two independent measurements: $\chi^2_l = \chi^2_l(\overrightarrow{\alpha_l}) + \chi^2_{ll}(\overrightarrow{\alpha_{ll}})$ $\overrightarrow{\alpha_l} \neq \overrightarrow{\alpha_{ll}}$
- Best-fit value of the RAA rejected at 98 % C.L.


$\bar{\nu}_e$ signal extraction: what's new with phase-2 ?

• Increased statistics + More stable conditions

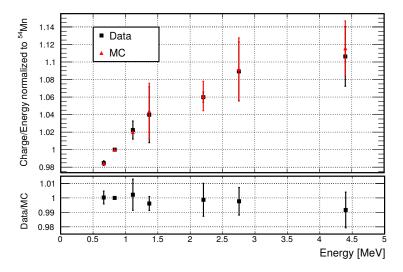
 \rightarrow Detailed studies on the PSD revealed $strong\ correlations$ with temperature & light leaks in the detector

 \rightarrow Need a reference population (singles γ 's) able to follow PSD variations per day

• New complementary & promising method based on an event by event PSD correction

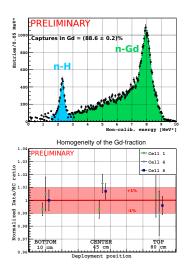
- \rightarrow No assumed model of the background + no time bin
- \rightarrow Stays coherent with first neutrino extraction method
- \rightarrow On-going tests on LS prototype at MPIK (Heidelberg)

- STEREO is now running under very stable conditions
- First exclusion contour obtained, original RAA is rejected at 98%CL using the ratio method. arXiv:1806.02096 (2018)
- The correlated background understanding improves using reactor-OFF periods of Phase-II \rightarrow Very promising new method based on PSD correction
- Data taking will continue until end 2019, reaching 300 days of reactor-ON data
- Improved results are coming soon, with a pure ²³⁵U spectrum


 \sim Thanks for your attention ! \sim

BACKUP

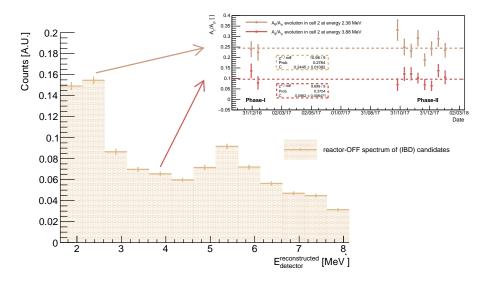
MC tuning


Quenching curve

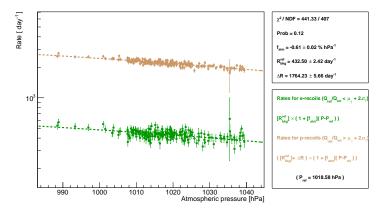
Non-linear light production in the large dE/dx regime (low E – Bragg peak)

Am-Be neutron source in target cells :

- n-capt time from AM-Be in agreement with IBD candidates
- Relative variations of n efficiency in agreement between MC and data
- Absolute fraction of Gd-capture fine-tuned in MC : determination of the glocal n-capture efficiency

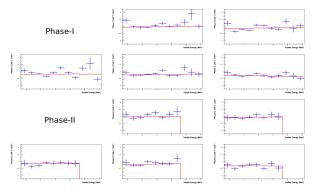


Systematics


Source	
Cell volume	0.85 %
n-capture efficiency	1.20 %
Asym cut efficiency	0.50 % (3% cell4)
D _{p-d} cut efficiency	0.50 %
Annihilation cut efficiency	0.50 %
(E _{j≠vertex} <0.8 MeV)	
TOTAL	17% (3.4% cell4)

Source	Contrib to $\sigma^{\rm Escale}$
Escale correlated	0.35 %

Source	Contrib to σ_{Cell}
Escale uncorrelated	1.50 %



- $\mathcal{A}_{\gamma}/\mathcal{A}_{p}$ compatible with a constant in all cell/energy bin
- Same correlation with atmospheric pressure for e-recoils rates and p-recoils rates

Ratio method: Results for Phase-I & II

Ratio method: cell 1 taken as reference

- Measured ratios

- Non-oscillation prediction

- Minimized pull terms stay within $\pm\,1\,\sigma$
- Non-oscillation hypothesis (H₀) can not be rejected: p-value = 34 % (40 %) for phase-I (phase-I+II)

Measured ratios for the cells from 2 to 6 (blue) compared to the null oscillation hypothesis model (red)