ATLAS Upgrade Detector and Physics

Nathan Readioff on behalf of ATLAS LPSC & LAPP Groups 28/11/18

Laboratoire de Physique Subatomique et de Cosmologie

Introduction

- Extensive work ongoing to prepare for various future upgrades to LHC and ATLAS
- Phase I to be implemented in next long shutdown
 - Maintenance and upgrades of collider and detectors
- Phase 2 to begin after Run 3 completed
 - Transition from LHC to High-Luminosity LHC (HL-LHC)
- HL-LHC will be first Higgs factory
 - Will allow precision measurements of Higgs couplings and differential cross-sections
 - Will provide access to rare decays
 - Will provide probes for New Physics
 - ATLAS detector will receive significant improvements and upgrades

Laboratory Activities

- LAPP and LPSC have complete set of activities covering ATLAS hardware, software, and physics studies
- Phase I:
 - LAr Calorimeter upgrades
- Phase 2:
 - Further LAr Calorimeter upgrades
 - New ATLAS Inner Tracker R&D
 - Pixel Detector stave design, prototype construction and testing
 - CO₂ cooling studies
 - Detector modelling and simulation
 - Preparation for ATLAS inner tracker construction
 - Documentation of ATLAS inner tracker (Pixel TDR...)
- Efforts ongoing to provide complete picture of Higgs physics at HL-LHC, with 3000 fb⁻¹ at 14 TeV
 - Preparation of upcoming CERN Yellow Report (input to the European strategy forum)
- Prospects studies being refined to take into account:
 - Effects of latest ATLAS detector upgrade geometries
 - Improved understanding of particle/object reconstruction performances
 - Improved analysis techniques developed for Run 2 (36 fb⁻¹ at 13 TeV)
 - Improved theoretical calculations
- LAPP and LPSC studying:
 - Higgs couplings
 - Vector boson scattering
 - diHiggs production (measurements of Higgs self-coupling constant)
- Also evaluating physics potential of HE-LHC, with 15 ab⁻¹ at 27 TeV
- Presentation will focus on ENIGMASS funded activities

LAr Calorimeter Upgrades: Phase I

- ATLAS currently groups LAr cells into 5.4k towers for trigger readout Tr
- Phase I upgrade to change grouping into 34k supercells
- Use of the supercells provides:
 - Longitudinal layer information
 - Higher granularity in η (front and middle layers)
 - Shower shape information to the LI trigger
 - Better rejection of jet background with electron triggers
 - Significant improvement in energy resolution
 - e/ γ trigger performance improvements (+ jets, E_T^{miss} and T)

LAPP responsible for developing back-end mezzanine cards, 150 cards in progress

LAr Calorimeter Upgrades: First supercell results (I)

- Demonstrator installed and taking data since 2015 (upgraded in 2018 to the latest readout version)
- Two different prototypes of LAr Trigger Digitizer boards (LTDBs):
 - One for region ϕ = 1.81 and ϕ = 1.91
 - One for region ϕ = 2.01 and ϕ = 2.11
 - Results in different calibration, slightly different results for those regions
- Data obtained from pp collisions, physics run 334487, recorded on August 30, 2017
- Events from LAr demonstrator matched to events collected in main read-out
 - Using bunch-crossing ID and bunch-crossing time (alternative method matches LI ID of events)
- Dedicated calibration coefficients obtained for supercells
 - Based on calibration scheme for LAr cells, using adapted code framework
- First supercell results:
 - Energy-dependence of energy comparison and timing resolution:
 - Width of energy ratio approaches 1-2%
 - Timing resolution approaches 0.5-1.0 ns, possible to identify bunch crossing

- Measured pulse shapes for each layer:
 - Measured pulse shapes (red) of supercells in the LAr Phase I demonstrator
 - Independently obtained, predicted pulse shapes (black)
- Good agreement is observed between measurement and prediction
 - Remaining small normalisation offsets are due to the preliminary calibration of the supercells.

Detector Upgrade: Mechanical Activities

- LPSC responsible for design and production of intermediate flanges
- LAPP performing extensive work on simulation models

- Studies on glue deposit for module-on-mechanical structures loading
 - Choice of glue (radiation hardness, viscosity, etc)
 - Test of deposits with stamps

- Clean room at LPSC ready last spring
- MMT (metrology machine for loading) installed last week!

Construction: Alpaca Cluster (CPPM-LAPP-LPSC)

i north

• Simplified sketch of module loading/integration in two steps:

- New organisation for production:
- Module loading: task sharing between LPSC and CPPM
- Cell integration: task sharing between LAPP, LPSC and CPPM

Detector Upgrade: CO₂ Cooling

- MARTA is first portable CO₂ cooling plant in France
 - Installed at LAPP
 - Funded by ENIGMASS
 - System performance being evaluated
 - Will be used for assembly and testing of staves at LAPP
- Test bench installed at LAPP
 - Used to test prototypes in collaboration with:
 - LPSC, Geneva, CERN
- LAPP has recognised expertise with CO_2 cooling simulations
 - Testing CO₂ diphasic model of new, unexplored condition regions
 - Publication in progress
- Surface storage necessary for CO₂ cooling
- LPSC committed to design and production of accumulators
 - Regulate pressure of return line, hence detector temperature
 - Surface storage vessel used to limit accumulator volume
- Plans for 2019:
 - Design full-scale accumulator for DEMO
 - Design surface storage vessel
 - Test interplay between local accumulator and surface vessel
 - Use Baby-demonstrator installed at CERN
 - Tests funded by ENIGMASS

Detector Upgrade: Pixel Simulation (1)

- Extensive work to create accurate computer simulations of new detector
- LAPP and LPSC focus on ITk pixel detector
- Pixel TDR published earlier this year
 - Some changes needed to be made to the design:
 - High-Granularity Timing Detector (HGTD) requires more space along ATLAS z-axis
 - Services at each end of ATLAS ITk required additional space
- ITk design modified to reduce impact of services material
 - Design changes to be published in upcoming Layout Task Force Report

Detector Upgrade: Pixel Simulation (2)

- Simulation constantly refined with latest engineering inputs
- Material is evolving and has strong impact on the design
- Tremendous effort by LPSC and LAPP to ensure accurate description of materials in simulation

Outer barrel longerons accurately modelled Plans to migrate conical rings to corrugated shell:

Endcaps follow pixel-ring half-shell design Detailed models of inner barrel support structures

HL-LHC: DiHiggs

- Aim to make first observation of HH production
- Measure λ_{HHH} and Kt (top-Yukawa coupling)
- HH Production has rich variety of final states
 - $bb\gamma\gamma$ has low branching ratio
 - bbTT, bbbb have high background
- Various institutes working on bbTT, bbbb
- Analyses performed as extrapolations of Run 2 data
- For bbbb:
 - 95 % C.L. (stat only): 4.1 < $\lambda_{HHH}/\lambda_{HHH}$ 8.7
 - 0.6σ significance
- For bbττ:
 - 95 % C.L. (stat only): -4.0<λ_{HHH}/λ_{HHH}SM<12.0
 - 0.6σ significance

From "Double Higgs Production", Dorival Gonçalves, HL/HE-LHC Workshop, Cern, 18/06/18

HL-LHC: HH→bbγγ

- LAPP+LPSC focus on bbγγ channel
- Latest public HL-LHC projections in Pixel TDR
- Analysis uses truth level MC samples
- Smearing functions approximate detector response
- Cut-based analysis
- Without systematic uncertainties:
 - 95 % C.L. (stat only): $0.2 < \lambda_{HHH} / \lambda_{HHH} \le 6.9$
 - 1.5σ significance
- + 2018 has seen exciting developments in bby γ analysis
- Analysis method refinements:
 - Improved b-tagging algorithm (better c-jet rejection)
 - Improved photon energy resolution
 - Boosted Decision Tree for event selection
 - Results not public yet :(
- Note summarising new results in preparation for YR
 - Currently being circulated round ATLAS
 - ATL-COM-PHYS-2018-1364
 - Presents updated bbTT results
 - Presents combination of bbbb, $bb\tau\tau, bb\gamma\gamma$
 - Presents first extrapolations of bbTT, bbYY to HE-LHC

5

-5

0

10

15

 $\lambda_{\rm HHH}/\lambda_{\rm HHH}^{\rm SM}$

20

Summary

- LAPP and LPSC are engaged in a complete set of activities
 - ATLAS hardware,
 - ATLAS software and simulation
 - Physics prospects studies
- Tremendous progress on all fronts!

Thank you for your attention!

Backup

Detector Upgrade: Demonstrator Stave

- Upgraded outer pixel barrel will have sensors and services mounted on longerons
- Construction of a full scale prototype launched beginning of 2017
 - IN2P3, CERN, Geneva, Germany, Japan collaboration

- Data and power routed via stave flexes
 - Design and production by LAPP
 - Design to be finalised in 2019

Detector Upgrade: Mechanical Activities

- LPSC responsible for design and production of intermediate flanges
- LAPP performed extensive work creating accurate models for simulation

- LPSC involved in several activities
- Calibration of heaters for OuterBarrel Pixel Layers

Construction of the Pixel Outer Barrel

- R&D:2014-2018
- Preparation of production : 2019-2020
- Production : 2021-2024

Cell loading/integration (I)

Cell loading/integration (2)

• Number of modules and mechanical supports

Layer	# Module rows in Φ	#Longerons	#Modules per Longeron	#Half Rings	#Modules per Half Ring	# Spare Longerons	# Spare Half Rings	# Modules including spare CLs	# Modules including spares and loading & integration yield
2	32	16	40	24	16	1	1	1080	1200
3	44	22	40	28	22	1	1	1558	1732
4	56	28	40	32	28	1	1	2084	2316
Total		66		84		3	3	4722	5249

- Scheduled sites:
 - 4 sites for cell loading
 - 4 sites for integration of longerons
 - 3 sites for integration of half-rings
- Total time to integrate a longeron: 5 weeks
- Total time to integrate a half-ring: 4 weeks

HL-LHC: Vector boson scattering with WZ

- Vector boson scattering provides probe for electroweak symmetry breaking
- Provides Benchmark for forward detector optimisation
- New note presents prospects for measuring VBS with WZ in fully leptonic final state

- Improvements with extended tracker, timing detector (HGTD)
- Using multivariate techniques
- Polarisation studies

Higgs couplings

- ATL-PHYS-PUB-2018-010
- HL-LHC aims allow precision measurements of Higgs boson properties
- Investigations performed on most critical theory uncertainties on Higgs production mechanism
- Presented in June HL/HE-LHC workshop
- Based on extrapolations from Run 2 analysis

