Summary of Physics results from the ATLAS experiment

Oleh Kivernyk on behalf of the LAPP and LPSC ATLAS groups

November 28, 2018 ENIGMASS meeting

(日)

Outline

• ATLAS Postdocs/PhD funded by ENIGMASS:

- **Postdocs:** Oleh Kivernyk (LAPP), Paolo Mastrandrea (LAPP), Nathan Readioff (LPSC)

- PhD: Olympia Dartsi, Peter Falke, Angela Burger

Performance

- Electron and photon calibration 2015-2016 (in preparation) Link
- Photon identification 2015-2016 Link
- Electron identification 2015-2016 Link

Physics analyses

- WZ cross sections and boson polarization Link
- Observation of EWK WZjj production Link
- $H
 ightarrow \gamma \gamma$ fiducial, differential cross-sections, STXS, couplings \frown Link
- Observation of ttH production

 Link
- Combination of searches for heavy resonances decaying into bosonic and leptonic final states Link

< □ > < 同 > <

ATLAS experiment

- LHCs Run-II came to an end with an excellent result of 158fb⁻¹ delivered pp data since 2015.
- ATLAS recorded about 149fb⁻¹ of data (efficiency 94.3%).
- Important contribution of the LAPP and LPSC groups to detector operation.
- $\bullet\,$ Plan to start Run-III in 2021 \to now is the time to focus on analysing of Run-II data.

Performance: electron and photon energy calibration

- Input to all Run-2 analyses using electrons/photons
- Active role of LAPP and LPSC groups in e/γ performance studies
- Detector calibration at harsh pile-up conditions is challenging
- Understanding of pile-up effects in calorimeter calibration significantly improved the measurement precision of Higgs mass in Run-II

Higgs mass combination

Summary of Physics results from the ATLAS

O.Kivernyk (LAPP)

Performance: electron and photon identification

Photon ID: cuts have been optimized to account for E_{T} -dependence.

Identification	Photons	Electrons
Discriminating variables	EM shower	EM shower $+$ track
Selection	Cuts	MVA likelihood
Efficiency measurements	$Z \rightarrow \ell \ell \gamma$, $e \rightarrow \gamma$,	Tag and Probe using
	single photons	$Z ightarrow$ ee and $Z ightarrow \ell \ell \gamma$

- Electron ID: optimized to be robust against pile-up.
- Efficiencies in data are measured using different methods covering different E_T -ranges. Difficulties: background subtraction, Data/MC differences.
- Electron and photon triggers updated in 2018 to keep up with the offline ID changes and pile-up Electron ID versus E_{τ}

O.Kivernyk (LAPP)

Summary of Physics results from the ATLAS

WZ cross sections and boson polarization

- Precise measurements of total and differential (p^Z_T, M^{WZ}_T, N_{jets}, etc) cross sections
 Separate and combined measurements for 4 lepton flavour channels
- First measurement of boson polarization in dibosons WZ produced in hadrons collisions
 - analysis 100% done by LAPP
 - Uses lepton angular distributions
 - Template fits to $q_{\ell} \times \cos \theta_{I,W(Z)}$ distributions
- Observed (expected) significance of $4.2\sigma(3.8\sigma)$ for longitudinally polarized Ws
- Probes anomalous triple gauge couplings which is senstitive to new physics

$$\frac{1}{\sigma_{W^*Z}}\frac{d\sigma_{W^*Z}}{d\cos\theta_{\ell,W}} = \frac{3}{8}f_{\rm L}(1\mp\cos\theta_{\ell,W})^2 + \frac{3}{8}f_{\rm R}(1\pm\cos\theta_{\ell,W})^2 + \frac{3}{4}f_0\sin^2\theta_{\ell,W}$$

O.Kivernyk (LAPP)

Summary of Physics results from the ATLAS

w

Observation of EWK WZjj processes

- First observation (5.6σ) of EWK WZjj production using 2015-2016 data
 - very rare process (44 events observed)
 - analysis 100% done by LAPP
- Probes anomalous quartic gauge couplings which is sensitive to new physics
- BDT is trained to separate EWK WZjj signal from other processes
- Good modeling of BDT shape in WZjj QCD region
- Signal region: EWK WZjj dominates at high score of BDT
- Same-sign EWK WWjj production has been also recently reported by ATLAS

Simplified Template Cross Section (STXS)

- Exp. categories are designed to enrich events of a given Higgs production mode (dependent on decay channel, MVA allowed)
- STXS bins are optimized for maximal sensitivity while reducing theory dependence (inclusive in Higgs decays)
- STXS are determined from the experimental categories by a global fit
- Measured STXS can be then used as input for interpretations (κ-factors, EFT interpretation)

Recent STXS measurements in Run-II

• Active role in optimization of HTXS bins

- Active role in $\mathbf{H} \rightarrow \gamma \gamma$ analyses
 - clean signal despite small branching ratio (0.2%)
 - large signal yields due to high ID efficiency
 - narrow $m_{\gamma\gamma}$ peak due to excellent photon energy resolution
- Enough events to measure
 - Stage 0: production XSs
 - Stage 1: STXS with strong merging (31 \rightarrow 9 bins)
 - Fiducial and differential XSs: $p_T^{\gamma\gamma}, y^{\gamma\gamma}, p_T^{j1}, N(b jets)$
- Still limited by statistics
- No significant deviation from the SM
- Currently working on EFT interpretation of measured STXS

Full 2015-2017 dataset

Observation of ttH in Run-II

- ttH cross section measurement allows direct constraint on top Yukawa coupling
- ATLAS observed ttH production (with a significance of 6.3σ) combining different decay channels
- LAPP contributed to diphoton decay channel
- LPSC contributed to multilepton decay channel

Full 2015-2017 dataset

Searches beyond SM

- Leading role of LAPP in $Z' \rightarrow \ell \ell$ searches
- This result is used in the first ever combined search in VV, VH, $\ell\nu$ and $\ell\ell$ channels
- Constraints on new heavy W/Z bosons (based on Heavy Vector Triplet (HVT) model)
- No significant deviation from the SM predictions. ۲
- Constraints obtained by the combination are improved ۰ significantly over individual channels.

O.Kivernyk (LAPP)

Summary of Physics results from the ATLAS

- $\bullet\,$ Significant contribution of LAPP and LPSC groups to e/γ performance
- Involvement in a wide range of ATLAS physics analyses
 - Standard Model (EW, Higgs, top) measurements
 - Beyond the SM searches