Automatic NLO predictions matched with parton showers for new physics

Benjamin Fuks

LPTHE / Sorbonne Université

Top LHC France 2019
LPSC - Grenoble - 25 April 2019

Outline

I. A basic introduction to perturbative QCD @ colliders
2. Automating NLO calculations in QCD for new physics
3. NLO impact on dark matter searches at the LHC
4. Vector-like quark phenomenology
5. Summary - conclusions

New physics @ the LHC

Path towards the characterization of (potentially observed) new physics
\because Getting information on the nature of an observation (fits, etc.) \star Leading order Monte Carlo techniques are sufficient
$\%$ Final words on the nature of any potential new physics \star Accurate measurements and precise predictions (at least NLO QCD)

Challenges with respect to new physics simulations

* Theoretically, we are still in the dark \star No sign of new physics, measurements are Standard-Model-like
\because No leading new physics candidate theory
\star Plethora of models to implement in the tools

New physics is standard in many tools today
\div Result of 20 years of development
\% Precision: processes can be simulated (easily) at the NLO-QCD accuracy
\% Used framework: MG5_aMC@NLO \& showcases involving top quarks

OCD 101: predictions at the LHC

Distribution of an observable ω : the QCD factorization theorem

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \omega}=\sum_{a b} \int \mathrm{~d} x_{a} \mathrm{~d} x_{b} \mathrm{f}_{\mathrm{a} / \mathrm{p}_{1}}\left(x_{a} ; \mu_{F}\right) \mathrm{f}_{\mathrm{b} / \mathrm{p}_{2}}\left(x_{b} ; \mu_{F}\right) \frac{\mathrm{d} \sigma_{\mathrm{ab}}}{\mathrm{~d} \omega}\left(\ldots, \mu_{F}\right)
$$

Long distance physics: the parton densities
\because Short distance physics: the differential parton cross section $\mathrm{d} \sigma_{\mathrm{ab}}$

* Separation of both regimes through the factorization scale μ_{F}
\star Choice of the scale $>$ theoretical uncertainties

Short distance physics: the partonic cross section
Calculated order by order in perturbative QCD: $\mathrm{d} \sigma=\mathrm{d} \sigma^{(0)}+\boldsymbol{\alpha}_{\mathrm{s}} \mathrm{d} \boldsymbol{\sigma}^{(1)}+$ \square
\star The more orders included, the more precise the predictions
\star Truncation of the series and $\alpha_{s}>$ theoretical uncertainties

Fixed-order predictions

Leading-order (LO): $\mathrm{d} \sigma \approx \mathrm{d} \sigma^{(0)}$

- Easily calculable
\star Automated for any theory and any process
$\%$ Very naive
* Rough estimate for many observables (large uncertainties)
\star Cannot be used for any observable (e.g., dilepton PT)

Next-to-leading-order (NLO): $\mathrm{d} \sigma \approx \mathrm{d} \sigma^{(0)}+\alpha_{\mathrm{s}} \mathrm{d} \sigma^{(1)}$
\because Two contributions: virtual loop and real emission
\star Both divergent
\star The sum is finite (KLN theorem)

* Reduction of the theoretical uncertainties
\star First order where loops compensate trees
\% Better description of the process
\star Impact of extra radiation
\star More initial states included
\star Sometimes not precise enough

The Drell-Yan example:
Representative virtual

Representative real

Matrix-element / parton shower matching

\checkmark Problems with NLO (fixed-order) calculations
\because Soft and collinear radiation $>$ large logarithms
\because Spoiling the convergence of the perturbative series
\checkmark Matching with parton showers

\because Resummation of the soft and collinear radiation
$\%$ Predictions for a fully exclusive description of the collisions
$\%$ Suitable for going beyond the parton level (hadronization, detector simulation)

Outline

I. A basic introduction to perturbative QCD @ colliders
2. Automating NLO calculations in QCD for new physics
3. NLO impact on dark matter searches at the LHC
4. Vector-like quark phenomenology
5. Summary - conclusions

NLO calculations in a nutshell

Contributions to an NLO result in QCD

*Three ingredients: the Born, virtual loop and real emission contributions

$$
\sigma_{N L O}=\int \mathrm{d}^{4} \Phi_{n} \mathcal{B}+\int \mathrm{d}^{4} \Phi_{n} \int_{\text {loop }} \mathrm{d}^{d} \ell \mathcal{V}+\int \mathrm{d}^{4} \Phi_{n+1} \mathcal{R}
$$

Challenge: automatically computing predictions for any process in any model

The virtuals

Virtual contributions

Loop diagram calculations

$\%$ Calculations to be done in $d=4-2 \varepsilon$ dimensions
\star Divergences made explicit $\left(\mathrm{I} / \boldsymbol{\varepsilon}^{2}, \mathrm{I} / \varepsilon\right)$
\star Numerical challenge
\& Reducing loop integrals to scalar integrals

$$
\int \mathrm{d}^{d} \ell \frac{N(\ell)}{D_{0} D_{1} \cdots D_{m-1}}=\sum a_{i} \int \mathrm{~d}^{d} \ell \frac{1}{D_{i_{0}} D_{i_{1}} \cdots}
$$

\star Involves integrals with up to four denominators

* The decomposition basis is finite

> The basis integrals can be calculated once and for all
m-point diagram with n external momenta

From tensor to scalar loop integrals (I)

In the past: the reduction is done at the integral level

$$
\int \mathrm{d}^{d} \ell \frac{N(\ell)}{D_{0} D_{1} \cdots D_{m-1}}=\sum a_{i} \int \mathrm{~d}^{d} \ell \frac{1}{D_{i_{0}} D_{i_{1}} \cdots}
$$

For instance: Passarino-Veltman reduction [Passarino \& Veltman (NPB79)]
Contracting the tensorial structure of the numerator
$\%$ Extracting the a_{i} coefficients from the equalities

More recent technique: the reduction can also be done at the integrand level

$$
\frac{N(\ell)}{D_{0} D_{1} \cdots D_{m-1}}=\sum a_{i} \frac{1}{D_{i_{0}} D_{i_{1}} \cdots}
$$

\because An integral equality does not however mean an integrand equality

$$
\int \mathrm{d}^{d} \ell \frac{N(\ell)}{D_{0} D_{1} \cdots D_{m-1}}=\sum a_{i} \int \mathrm{~d}^{d} \ell \frac{1}{D_{i_{0}} D_{i_{1}} \cdots} \quad \Rightarrow \quad \frac{N(\ell)}{D_{0} D_{1} \cdots D_{m-1}}=\sum a_{i} \frac{1}{D_{i_{0}} D_{i_{1}} \cdots}
$$

- Spurious terms must be included

Example: the OPP method

Apparition of spurious terms in the reduction
\because We restore the equality at the integrand level by introducing spurious terms

$$
\frac{N(\ell)}{D_{0} D_{1} \cdots D_{m-1}}=\sum\left[a_{i}+\tilde{a}_{i}(\ell)\right] \frac{1}{D_{i_{0}} D_{i_{1}} \cdots}
$$

\star Their integral vanishes

* Their functional form is known [del Aguila \& Pittau (JHEPP04)]
\because The integrand numerator can be decomposed
* The coefficients are evaluated numerically
\star One chooses ℓ so that several denominators vanish $>$ simplifications
\star One gets a system of equations to (numerically) solve

The rational terms

The loop momentum lives in a d-dimensional space
\div The reduction should be done in d dimensions and not in 4 dimensions $\int \mathrm{d}^{d} \ell \frac{N(\ell, \tilde{\ell})}{\bar{D}_{0} \bar{D}_{1} \cdots \bar{D}_{m-1}}$ with $\bar{\ell}=\ell+\tilde{\ell}$
\% Numerical methods work in four dimensions $>$ to be accounted for

The R_{1} terms originate from the denominators

* Connected to the internal propagators
\checkmark The R_{2} terms originate from the numerator
* Can be seen as extra diagrams with special Feynman rules

RI terms

The $R_{\text {I }}$ terms originate from the denominators

$$
\frac{1}{\bar{D}}=\frac{1}{D}\left(1-\frac{\tilde{\ell}^{2}}{\bar{D}}\right)
$$

\div These extra pieces can be calculated generically (3 integrals in total)

$$
\begin{aligned}
& \int \mathrm{d}^{d} \bar{\ell} \frac{\tilde{\ell}^{2}}{\overline{D_{i}} \bar{D}_{j}}=-\frac{i \pi^{2}}{2}\left[m_{i}^{2}+m_{j}^{2}-\frac{\left.p_{i}-p_{j}\right)^{2}}{2}\right]+\mathcal{O}(\varepsilon) \frac{1}{2} \\
& \int \mathrm{~d}^{d} \bar{\ell} \frac{\tilde{\ell}^{2}}{\bar{D}_{i} \bar{D}_{j} \bar{D}_{k}}=-\frac{i \pi^{2}}{2}+\mathcal{O}(\varepsilon) \\
& \int \mathrm{d}^{d} \overline{\ell_{\bar{\prime}}} \frac{\tilde{\ell}^{2}}{\bar{D}_{i} \bar{D}_{j} \bar{D}_{k} \bar{D}_{l}}=-\frac{i \pi^{2}}{6}+\mathcal{O}(\varepsilon)
\end{aligned}
$$

$\%$ The denominator structure is already known at the reduction time
\pm The R_{1} coefficients are extracted during the reduction

R_{2} terms

The R_{2} terms originate from the numerator

$$
\begin{array}{cc}
\bar{N}(\bar{\ell})= \\
\substack{\text { D } \\
\text { D-dim } \\
\text { 4-dim }} & (-2 \varepsilon)+\tilde{N}(\tilde{\ell}, \ell, \varepsilon) \\
\text { 4-dim }
\end{array} \quad \Rightarrow \quad R_{2} \equiv \lim _{\varepsilon \rightarrow 0} \frac{1}{(2 \pi)^{4}} \int \mathrm{~d}^{d} \bar{\ell} \frac{\tilde{N}(\tilde{\ell}, \ell, \varepsilon)}{\bar{D}_{0} \bar{D}_{1} \cdots \bar{D}_{m-1}}
$$

$\%$ Practically, we isolate the epsilon part

* There is only a finite set of loops for which it does not vanish
\checkmark They can be re-expressed in terms of R_{2} Feynman rules

Properties of the R_{2}

\because Process-dependent and model-dependent
$\%$ In a renormalizable theory, there is a finite number of them \star They can be calculated once and for all for a specific model $>R_{2}$ counterterm Feynman rules

Reals

Infrared divergences

Properties of the NLO cross section

$$
\sigma_{N L O}=\int \mathrm{d}^{4} \Phi_{n} \mathcal{B}+\int \mathrm{d}^{4} \Phi_{n} \int_{\text {loop }} \mathrm{d}^{d} \ell \mathcal{V}+\int \mathrm{d}^{4} \Phi_{n+1} \mathcal{R}
$$

$\%$ All the individual pieces are (infrared-)divergent
\star Issues for a numerical code

* The sum is finite (KLN theorem)
\star The divergences have the same origin and cancel
\star Numerically, their cancellation must be dealt with explicitly
\star Introduction of a subtraction method

Origins of the infrared divergences

Divergences are related to soft and collinear radiation
\because Real emission (in the soft limit)
$i M \approx g_{s} T^{a}\left[\frac{\epsilon^{*} \cdot k_{2}}{k_{2}^{0} k_{g}^{0}(1+\cos \theta)}-\frac{k_{1} \cdot \epsilon^{*}}{k_{1}^{0} k_{g}^{0}(1-\cos \theta)}\right] i M^{\text {Born }}$

$\%$ Virtual corrections (in the soft limit)

$$
i M \approx\left(i g_{s}\right)^{2} \int \mathrm{~d} \ell \frac{k_{1} \cdot k_{2}}{\ell^{2}\left[k_{2}^{0} \ell^{0}(1+\cos \theta)\right]\left[k_{1}^{0} \ell^{0}(1-\cos \theta)\right]} i M^{\text {Born }}
$$

※ If we cannot distinguish "no branching" from "soft-collinear emission" \star Cancellation occurs

* Infrared safety: observables are not sensitive to soft-collinear emissions

Structure of the poles
\because Virtuals: in dimensional regularization, poles in the regularization parameter
$\%$ Real emission: poles appear after integration over the d-dimensional phase space

Subtraction methods

Subtracting the poles

* The structure of the poles is known $>$ subtraction methods

$$
\sigma_{N L O}=\int \mathrm{d}^{4} \Phi_{n} \mathcal{B}+\int \mathrm{d}^{4} \Phi_{n+1}[\mathcal{R}-\mathcal{C}]+\int \mathrm{d}^{4} \Phi_{n}\left[\int_{\text {loop }} \mathrm{d}^{d} \ell \mathcal{V}+\int \mathrm{d}^{d} \Phi_{1} \mathcal{C}\right]
$$

* The subtraction terms \mathscr{C} contains the pole structure \star Subtracted from the reals $>$ makes them finite
\star Added back to the virtuals $>$ makes them finite
\star All individual pieces are finite
* Integrals can be computed numerically in four dimensions

Choice of the subtraction terms
$\%$ Must match the infrared structure of the real
$\%$ Should be integrable over the one-body phase space conveniently \star To be added to the virtuals

- Should be integrable numerically conveniently

The Frixione-Kunszt-Signer subtraction (I)

Division of the phase space
© Decomposition of the matrix element: at most one singularity per term
$\mathrm{d} \sigma^{(n+1)}=\sum_{i j} \mathcal{S}_{i j} \mathrm{~d} \sigma_{i j}^{(n+1)}$ where (i, j) denotes a parton pair that yields an IR divergence
\therefore The behavior of $S_{i j}$ is such that:
$\star S_{i j} \rightarrow 1$ if the partons i and j are collinear
$\star S_{i j} \rightarrow 1$ if the parton i is soft
$\star S_{i j} \rightarrow 0$ for all other infrared limits

The Frixione-Kunszt-Signer subtraction (2)

The FKS formula

\because The infrared (IR) singularities are separated $\mathrm{d} \sigma^{(n+1)}=\sum_{i j} \mathcal{S}_{i j} \mathrm{~d} \sigma_{i j}^{(n+1)}$
\because The divergent behaviour of $\sigma_{i j}$ reads
$\mathrm{d} \sigma_{i j}^{(n+1)} \propto \frac{1}{E_{i}^{2}} \frac{1}{1-\cos \theta_{i j}} \propto \frac{1}{\xi_{i}^{2}} \frac{1}{1-y_{i j}}$ with $\begin{gathered}\xi_{i}=E_{i} \sqrt{\hat{s}} \\ y_{i j}=\cos \theta_{i j} \\ \longleftarrow\end{gathered}$ Controls the soft pieces Controls the collinear pieces
\div We define a divergence-free quantity

$$
\frac{\mathrm{d} \sigma_{i j}^{(n+1)}=\left[\frac{1}{\xi_{i}}\right]_{c}\left[\frac{1}{1-y_{i j}}\right]_{\delta}\left[\xi_{i}^{2}\left(1-y_{i j}\right)\left|M_{i j}^{(n+1)}\right|^{2}\right] \mathrm{d} \xi_{i} \mathrm{~d} y_{i j} \mathrm{~d} \phi \mathrm{~d} \Phi_{n}^{i j}}{\substack{\text { Regulators: } \\
\text { "plus-distribution" }}} \begin{gathered}
\text { No more IR } \\
\text { divergencies }
\end{gathered} \quad \begin{gathered}
\text { Factorized } \\
\text { phase space }
\end{gathered}
$$

* The regulators introduce two parameters

$$
\begin{aligned}
& \int_{0}^{\xi_{\max }} \mathrm{d} \xi_{i} f\left(\xi_{i}\right)\left[\frac{1}{\xi_{i}}\right]_{c}=\int_{0}^{\xi_{\max }} \mathrm{d} \xi_{i} \frac{f\left(\xi_{i}\right)-f(0) \Theta\left(\xi_{\text {cut }}-\xi_{i}\right)}{\xi_{i}} \\
& \int_{-1}^{+1} \mathrm{~d} y_{i j} g\left(y_{i j}\right)\left[\frac{1}{1-y_{i j}}\right]_{\delta}=\int_{-1}^{+1} \mathrm{~d} y_{i j} \frac{g\left(y_{i j}\right)-g(1) \Theta\left(y_{i j}-1+\delta\right)}{1-y_{i j}}
\end{aligned}
$$

Events and counter-events

The regulators define events and counter-events
$\%$ Integrating over the regulators gives

$$
\begin{aligned}
\mathrm{d} \sigma_{i j}^{(n+1)}= & {\left[\frac{1}{\xi_{i}}\right]_{c}\left[\frac{1}{1-y_{i j}}\right]_{\delta} \Sigma_{i j}\left(\xi_{i}, y_{i j}\right) \mathrm{d} \xi_{i} \mathrm{~d} y_{i j} } \\
= & \int_{0}^{\xi_{\max }} \mathrm{d} \xi_{i} \int_{-1}^{+1} \mathrm{~d} y_{i j} \frac{1}{\xi_{i}\left(1-y_{i j}\right)}\left[\text { Event }_{\Sigma_{i j}\left(\xi_{i}, y_{i j}\right)}^{-\Sigma_{i j}\left(\xi_{i}, 1\right) \Theta\left(y_{i j}-1+\delta\right)}\right. \\
& \left.-\Sigma_{i j}\left(0, y_{i j}\right) \Theta\left(\xi_{\text {cut }}-\xi_{i}\right)+\Sigma_{i j}(0,1) \Theta\left(y_{i j}-1+\delta\right) \Theta\left(\xi_{\text {cut }}-\xi_{i}\right)\right]
\end{aligned}
$$

\checkmark Properties of the events and counter-events
$\%$ If i and j are on-shell (event), the combined $i j$ parton is on-shell (counter-event) \star This leads to a reshuffling of all particle momenta
\because An event and the associated counter-event can fill different histogram bins \star Peak-dip structure for the fixed-order distributions (even for IR safe observables and for any binning resolution)

Fixed order event generation

Unweighting is not possible at the fixed order
\& Kinematic mismatch of events and counter-events
\star The (n)-body and $(n+l)$-body contributions are not bounded from above \star Only weighted events can be used

Fixed-order instabilities
$\because(n)$-body kinematical constraints relaxed in the $(n+l)$-body case \star Weird behavior of the distributions

Matching with

 parton showers
Matching NLO calculations to parton showers

Parton shower / hadronization effects
© Evolution of hard partons down to more realistic final states made of hadrons \star Fully exclusive description of the events

* Resummation of the soft-collinear QCD radiation
\star Cures the fixed-order instabilities
Double counting when matching with parton showers

※ Two sources of double counting
\star Radiation: both at the level of the reals and of the shower
\star No radiation: both in the virtuals and in the no-emission probability

The MC@NLO prescription (I)

One solution to the double counting issue: the MC@NLO method

\div The shower is unitary
\star What is double counted in the virtuals is (minus) what is double counted in the reals
\because We introduce MC counterterms: adding and subtracting identical contributions

$$
\sigma_{N L O}=\int \mathrm{d}^{4} \Phi_{n}\left[\mathcal{B}+\int_{\text {loop }} \mathrm{d}^{d} \ell \mathcal{V}+\int \mathrm{d}^{4} \Phi_{1} \mathcal{M C}\right] \mathcal{I}_{\mathrm{MC}}^{(n)}+\int \mathrm{d}^{4} \Phi_{n+1}[\mathcal{R}-\mathcal{M C}] \mathcal{I}_{\mathrm{MC}}^{(n+1)}
$$

$\star \mathcal{I}_{\mathrm{MC}}^{(n)}$ represents the shower operator for a (n)-body final state
\star The MC counterterms: how the shower gets from (n)-body to ($n+l$)-body final states

$$
\mathcal{M C}=\left|\frac{\partial\left(t^{\mathrm{MC}}, z^{\mathrm{MC}}, \phi\right)}{\partial \Phi_{1}}\right| \frac{1}{t^{\mathrm{MC}}} \frac{\alpha_{s}}{2 \pi} P_{a \rightarrow b c}\left(z^{\mathrm{MC}}\right) \mathcal{B}
$$

The MC@NLO prescription (2)

Properties of the Monte Carlo counterterms

$$
\sigma_{N L O}=\int \mathrm{d}^{4} \Phi_{n}\left[\mathcal{B}+\int_{\text {loop }} \mathrm{d}^{d} \ell \mathcal{V}+\int \mathrm{d}^{4} \Phi_{1} \mathcal{M C}\right] \mathcal{I}_{\mathrm{MC}}^{(n)}+\int \mathrm{d}^{4} \Phi_{n+1}[\mathcal{R}-\mathcal{M C}] \mathcal{I}_{\mathrm{MC}}^{(n+1)}
$$

\because Maintain the NLO normalization of the cross section
\star After expanding the shower operator at order α_{s}
*They match the real emission IR behavior (by definition of the shower)
\star The MC counterterms and the reals have the same kinematics by construction (no need for momentum reshuffling; the cancellation is exact)
\star Weights for the (n)-body and $(n+1)$-body are now bounded from above
\star Unweighting is possible

* They ensure a smooth transition between the hard and soft-collinear regions \star Soft-collinear region: $\mathcal{R} \approx \mathcal{M C}$ and the shower dominates \star Hard region: $\mathcal{M C} \approx 0, \quad \mathcal{I}_{\mathrm{MC}}^{(n)} \approx 0, \quad \mathcal{I}_{\mathrm{MC}}^{(n+1)} \approx 1$ and the hard emission dominates
\because They are shower-dependent

Monte Carlo and FKS counterterms

MC and FKS counterterms

* The MC counterterms cannot be integrated numerically \star Issue with the pole cancellation in the virtuals
* Simultaneous usage of the NLO and MC counterterms

$$
\sigma_{N L O}=\int \mathrm{d}^{4} \Phi_{n}\left[\mathcal{B}+\left(\int_{\text {loop }} \mathrm{d}^{d} \ell \mathcal{V}+\int \mathrm{d}^{d} \Phi_{1} \mathcal{C}\right)+\int \mathrm{d}^{4} \Phi_{1}(\mathcal{M C}-\mathcal{C})\right] \mathcal{I}_{\text {MC }}^{(n)}+\int \mathrm{d}^{4} \Phi_{n+1}[\mathcal{R}-\mathcal{M C}] \mathcal{I}_{\mathrm{MC}}^{(n+1)}, ~\left(\begin{array}{l}
\text {-events }
\end{array}\right.
$$

* In practice, S -events and H -events are generated separately \star The related contribution can carry a negative weight
\star The sign of the weight has to be included in the unweighting procedure
[Alwall, Frederix, Frixione, Hirschi, Mattelaer, Shao, Stelzer, Torrielli \& Zaro (JHEP'I4)]].

Summary: the NLO+PS simulation chain

Automatic NLO simulations with MG5_AMC

From Lagrangians to analyzed NLO simulated collisions

```
    Idea / Lagrangian
```

\downarrow
FeynRules / NLOCT / UFO@NLO

Analysis
\% FeYnRules is linked to NLOCT \star Calculation of UV and R_{2} counterterms \star Export of the information to the UFO
[Alloul, Christensen, Degrande, Duhr \& BF (CPC'I4)] [Degrande (CPC'I5)]
[Degrande, Duhr, BF, Mattelaer \& Reither (CPC' 12)]
[Degrande, Duhr, BF, Hirschi, Mattelaer \& Shao (in prep.)]
\therefore Parton shower matching: MC@NLO \star Automatic (MG5_aMC)
\star Restrictions on the renormalization scheme

Model library

NLO-QCD simulations for new physics are now the state of the art * Via a joint use of FeynRuLes and MADGraph5_aMC@NLO

* Many models are publicly available
\star MSSM and supersymmetry-inspired simplified models
\star BSM Higgs models
\star Extra gauge bosons
\star Dark matter simplified models
\star Higgs effective field theories
\star Top effective field theories
\star Vector-like quark models

Outline

I. A basic introduction to perturbative QCD @ colliders
2. Automating NLO calculations in QCD for new physics

3. NLO impact on dark matter searches at the LHC

4. Vector-like quark phenomenology
5. Summary - conclusions

Top-philic dark matter @ LHC

\checkmark A simplified model for dark matter with a mediator and a DM candidate * MFV motivation: enhanced couplings to the third generation

This scenario can be probed in many ways at colliders
\mathbb{E}_{T}
\star With or without missing energy \star Via tree or loop-induced processes \star Via top-enriched final states or not

Recasting with MADANALYSIS 5

[Conte, BF, Serret (CPC 'I3); Conte, Dumont, BF, Wymant (EPJC 'I4); Dumont, BF, Kraml et al. (EPJC 'I5); Conte \& BF (IJMPA' I8)]

The MADANALYSIS 5 strategy for the reinterpretation of an LHC analysis
\because Relies on a (public) detector simulation mimicking ATLAS-CMS simulations
$\%$ Relies on a (public) framework where LHC analyses can be easily implemented

Scheme

Implementing a new analysis in MADANAIYSIS 5

[Conte, BF, Serret (CPC 'I3); Conte, Dumont, BF, Wymant (EPJC 'I4); Dumont, BF, Kraml et al. (EPJC 'I5); Conte \& BF (IJMPA' I8)]
Picking up an experimental publication
\% Reading
Relatively easy

- Understanding

Writing the analysis code in the tool internal language ∇ Relatively easy
Getting the information missing from the publication for a proper validation

* Efficiencies (trigger, electrons, muons, b-tagging, JES, etc.)
\star Including PT and/or $\boldsymbol{\eta}$ dependence
\star Accurate information
! Essential
\mathbf{X} Often difficult!
\because Detailed cutflows for some well-defined benchmark scenarios \star Exact definition of the benchmarks (SLHA spectra)
\star Event generation information (cards, tunes, LHE files if possible)
$\%$ Expected number of events in each region and cross sections
$\%$ Digitized histograms (e.g., on HEPDATA)
Comparing theory tools and real life (and beware of the genuine differences between both approaches)

Recasting CMS=EXO-12-048

Missing information for the validation

- Discussion with CMS to get validation benchmarks

Discussions with CMS needed : Cutflows and Monte Carlo information for given benchmarks

Validation:

	Selection step	CMS	$\epsilon_{i}^{\text {CMS }}$	MA5	$\epsilon_{i}^{\text {MA5 }}$	$\delta_{i}^{\mathrm{rel}}$	Validated at the 20% level
0	Nominal	84653.7		84653.7			
1	One hard jet	50817.2	0.6	53431.28	0.631	5.2%	
2	At most two jets	36061	0.7096	38547.75	0.721	1.61\%	
3	Requirements if two jets	31878.1	0.884	34436.35	0.893	1.02\%	
4	Muon veto	31878.1	1	34436.35	1.000	0	
5	Electron veto	31865.1	1	34436.35	1.000	0	
6	Tau veto	31695.1	0.995	34397.54	0.998	0.3\%	Issue with the lowMET modelling in Delphes
	$\mathbb{E}_{T}>250 \mathrm{GeV}$	8687.22	0.274	7563.04	0.219	20.00\%	
	$⿻^{T}>300 \mathrm{GeV}$	5400.51	0.621	4477.67	0.592	4.66%	
	$E_{T}>350 \mathrm{GeV}$	3394.09	0.628	2813.70	0.628	0.00\%	
	$E_{T}>400 \mathrm{GeV}$	2224.15	0.6553	1753.71	0.623	4.93\%	
	$E_{T}>450 \mathrm{GeV}$	1456.02	0.654	1110.92	0.633	3.21\%	
	$E_{T}>500 \mathrm{GeV}$	989.806	0.679	722.83	0.650	4.27\%	
	$⿻_{T}>550 \mathrm{GeV}$	671.442	0.678	487.54	0.674	0.59\%	

MADANAGYSIS 5 analyses on INSPIRE

Implementation of LHC analyses can be uploaded on INSPIRE

- DOI are assigned: can be cited, searched for, etc.
Information Citations (11) Files \rightarrow Files are versioned, can be downloaded

> MadAnalysis5 implementation of the CMS search for dark matter production with top quark pairs in the single lepton channel (CMS-B2G-14-004)

and citations
Fuks, Benjamin; Martini, Antony

Description: This is the MadAnalysis5 implementation of the CMS search for dark matter in a channel where a pair of dark matter particles is produced in association with a top-antitop system. This search targets events featuring a single lepton originating from the top decays and a large amount of missing transverse energy.

Information how to use this code and a detailed validation summary are available at http://madanalysis.irmp.ucl.ac.be/wiki/PhysicsAnalysisDatabase. The CMS analysis is documented at https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G14004.

Cite as: Fuks, B., Martiny, A. (2016). MadAnalysis5 implementation of the CMS search for dark matter production with top quark pairs in the single lepton channel (CMS-B2G-14-004). doi:
10.7484/INSPIREHEP.DATA.MIHA.JR4G

Automatic installation of all implemented analyses from MADANALYSIS 5

Record added 2016-05-09, last modified 2016-05-09

tモ̄ + MET constraints on top-philic dark matter
 [Arina, Backovic, Conte, BF, Guo, Heisig, Hespel, Krämer, Maltoni, Martini, Mawatari, Pellen \& Vryonidou (JHEP'16)]

A simplified model for top-philic dark matter

\% A dark sector with a fermionic dark matter candidate X
$\because \mathrm{A}$ (scalar) mediator Y_{0} linking the dark sector and the top $\mathcal{L}_{t, X}^{Y_{0}}=-\left(g_{t} \frac{y_{t}}{\sqrt{2}} \bar{t} t+g_{X} \bar{X} X\right) Y_{0}$

\because Could be probed with tē+MET events (CMS-B2G-I4-004)

For central scales: mild (but visible) NLO effects on the exclusions

$\%$ How is the picture changing when including scale variations?

NLO effects on a CLs

[Arina, Backovic, Conte, BF, Guo, Heisig, Hespel, Krämer, Maltoni, Martini, Mawatari, Pellen \& Vryonidou (JHEP'16)]

There are theoretical uncertainties on a CLs number

	$\left(m_{Y}, m_{X}\right)$	$\sigma_{\mathrm{LO}}[\mathrm{pb}]$	$\mathrm{CL}_{\mathrm{LO}}[\%]$	$\sigma_{\mathrm{NLO}}[\mathrm{pb}]$	CL $_{\mathrm{NLO}}[\%]$
I	$(150,25) \mathrm{GeV}$	$0.658_{-24.0 \%}^{+34.9 \%}$	$98.7_{-13.0 \%}^{+0.8 \%}$	$0.773_{-10.1 \%}^{+6.1 \%}$	$95.0_{-0.4 \%}^{+2.7 \%}$
II	$(40,30) \mathrm{GeV}$	$0.776_{-24.1 \%}^{+34.2 \%}$	$74.7_{-17.7 \%}^{+19.7 \%}$	$0.926_{-10.4 \%}^{+5.7 \%}$	$84.2_{-14.4 \%}^{+0.4 \%}$
III	$(240,100) \mathrm{GeV}$	$0.187_{-24.4 \%}^{+37.1 \%}$	$91.6_{-18.1 \%}^{+6.4 \%}$	$0.216_{-11.4 \%}^{+6.7 \%}$	$86.5_{-5.5 \%}^{+8.6 \%}$

\because An excluded point may not be excluded when accounting for uncertainties
© The CLs number can increase / decrease at NLO
$\%$ The error band is reduced

Outline

I. A basic introduction to perturbative QCD @ colliders
2. Automating NLO calculations in QCD for new physics
3. NLO impact on dark matter searches at the LHC
4. Vector-like quark phenomenology
5. Summary - conclusions

A general vector-like quark model

An effective Lagrangian (with four partners:T, B, X and Y)

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{VLQ}}=i \bar{Y} \not D Y-m_{Y} \bar{Y} Y+i \bar{B} \not D B-m_{B} \bar{B} B+i \bar{T} \not D T-m_{T} \bar{T} T+i \bar{X} \not D X-m_{X} \bar{X} X \\
& \quad-h\left[\bar{B}\left(\hat{\kappa}_{L}^{B} P_{L}+\hat{\kappa}_{R}^{B} P_{R}\right) q_{d}+\bar{T}\left(\hat{\kappa}_{L}^{T} P_{L}+\hat{\kappa}_{R}^{T} P_{R}\right) q_{u}+\text { h.c. }\right] \\
& \quad+\frac{g}{2 c_{W}}\left[\bar{B} \not Z\left(\tilde{\kappa}_{L}^{B} P_{L}+\tilde{\kappa}_{R}^{B} P_{R}\right) q_{d}+\bar{T} \not \subset\left(\tilde{\kappa}_{L}^{T} P_{L}+\tilde{\kappa}_{R}^{T} P_{R}\right) q_{u}+\text { h.c. }\right] \\
& \quad+\frac{\sqrt{2} g}{2}\left[\bar{Y} \bar{W}\left(\kappa_{L}^{Y} P_{L}+\kappa_{R}^{Y} P_{R}\right) q_{d}+\bar{B} \bar{W}\left(\kappa_{L}^{B} P_{L}+\kappa_{R}^{B} P_{R}\right) q_{u}+\text { h.c. }\right] \\
& \quad+\frac{\sqrt{2} g}{2}\left[\bar{T} W\left(\kappa_{L}^{T} P_{L}+\kappa_{R}^{T} P_{R}\right) q_{d}+\bar{X} W\left(\kappa_{L}^{X} P_{L}+\kappa_{R}^{X} P_{R}\right) q_{u}+\text { h.c. }\right]
\end{aligned}
$$

Illustrative process

\star Quark partners decay into an electroweak boson and a jet/top
« Pair, single and QV/QH associated production can be simulated

Total cross sections for pair production

Total rates for pair production at 13 TeV

$m_{T}[\mathrm{GeV}]$	Scenario	$\sigma_{\mathrm{LO}}[\mathrm{pb}]$	$\sigma_{\mathrm{NLO}}[\mathrm{pb}]$
400	QCD	$\left(7.06910^{0}\right)_{-22.6 \%}^{+32.0 \%+2.7 \%}$	$\left(1.00410^{1}\right)_{-11.3 \%}^{+9.4 \%}{ }_{-2.5 \%}^{+2.5 \%}$
	TH1	$\left(7.02210^{0}\right)_{-2}^{+3.2 \% ~} 3.80{ }_{-}+1.2 \%$	
800	QCD	$\left(1.26110^{-1}\right)_{-23.2 \%}^{+33.2 \%+3.8 \%}$	$\left(1.73310^{-1}\right)_{-11.1 \%}^{+8.5 \%}+4.4 \%$
	TH1	$\left(1.24410^{-1}\right)_{-31.8 \%}^{+18.2 \%}+7.3 \%$	$\left(1.70210^{-1}\right)_{-20.0}^{+2.3 \%}{ }_{-}^{+6.0 \%}+\underline{13.9 \%}$
1200	QCD	$\left(7.68510^{-3}\right)_{-23.7 \%}^{+34.5 \%}+5.8 \%$	$\left(1.06110^{-2}\right)_{-11.4 \%-5.8 \%}^{+8.8 \%}{ }^{+5.8 \%}$
	TH1	$\left(1.05310^{-2}\right)_{-36.7 \%}^{+1.7 \%}+28.4 \%$	$\left(1.37210^{-2}\right)_{-29.6 \%}^{+16.0 \%}+25.2 \%$
1600	QCD	$\left(7.47710^{-4}\right)_{-24.2 \%}^{+34.9 \%}+8.5 \%$	$\left(1.03010^{-3}\right)_{-11.6 \%}^{+9.0 \%}+8.6 \%$
	TH1		
2000	QCD	$\left(8.98010^{-5}\right)_{-24.5 \%}^{+35.5 \%}{ }_{-18.3 \%}$	$\left(1.26010^{-4}\right)_{-11.7 \%}^{+8.7 \%}+17.8 \%$
	TH1	$\left(1.56310^{-3}\right)_{-20.0 \%}^{+4.2 \%}{ }_{-13.0 \%}^{+5.4 \%}$	$\left(1.96010^{-3}\right)_{-14.0 \%}^{+6.3 \%}{ }_{-13.6 \%}^{+6.0 \%}$

* NNPDF 3.0 densities
\star Central scale: average M_{T}
* 'QCD' QCD only

* 'THI': all diagrams (with Higgs exchanges)

\because NLO effects

$\star 50 \%$ increase of the rate
\star Reduction of the scale uncertainties
\% Higgs-exchange diagrams
\star Dominate for large masses \star Impact on the uncertainties

NLO total rates for diHiggs production

Total rates (first NLO-QCD calculations in many cases)

\because NLO: large K-factors, smaller errors
$\because E W$ diagrams for QQ production \star Surpass QCD prod. at large mass

© QH production

\star Competes with QQ prod. at large mass

* H-boson pair production

* Loop-induced diagrams dominate

* t-channelVLQ exchange diagrams: huge K-factor
$>$ Coupling proportional to $\mathrm{me}_{\mathrm{Q}} / \mathrm{VSM}_{4} \mathrm{U}_{41}$
$>$ Driven by the $u-V L Q$ mixing U
$>$ VLQ mass enhancement

Single VLe production: leading jet

\because Benchmark: the VLQ is an up partner \star Couples to the Z only

\because The ${ }^{\text {st }}$ jet mostly arises from Q decays \star Peak at about half the Q mass
\because Constant K-factors (normalization effects) $\star K=I$ and $I .20$ for $\mathrm{m}_{\mathrm{Q}}=500 \mathrm{GeV}$ and I .5 TeV
\div NLO effects
\star Slight distortion of the shapes for large m_{Q}
\star Reduction of the theoretical uncertainties

Single VLO production: 2nd jet

* Benchmark: the VLQ is an up partner \star Couples to the Z only

\because The $2^{\text {nd }}$ jet spectrum
\star The low pt region is depleted (Q is heavy)
\star Plateau extending up to half the Q mass
$>$ jet issued either from the Q or from the Z
$>$ remainder: $\mathrm{Q} \rightarrow \mathrm{Zj} \rightarrow 3 \mathrm{j}$
\div Constant K-factors (normalization effects) $\star K=I$ and $I .20$ for $\mathrm{m}_{\mathrm{Q}}=500 \mathrm{GeV}$ and I .5 TeV © NLO effects
\star Normalization enhancement (for large m_{Q})
\star Slight distortion of the shapes (for large m_{Q})
\star Reduction of the theoretical uncertainties

Single VLO production: third generation

Single top-partner production
$\%$ Benchmark: the VLQ is a top partner

Lagrangian and diagrams
\% Production through W-couplings

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{VLQ}}=i \bar{T} \not D T-m_{T} \bar{T} T \\
& \quad+\frac{\sqrt{2} g}{2} \kappa_{L}^{T}\left[\bar{T} W P_{L} q_{d}+\text { h.c. }\right]
\end{aligned}
$$

\because Diagrams

Total rates at NLO
$\therefore 4$ and 5FNS: b-mass treatment
$\because \mathrm{K}$-factors in the 5FNS: < I (virtuals)
$\%$ K-factors in the 4FNS: MT dependent
\because NLO: reduction of the uncertainties
$\because \log \mathrm{Q} / \mathrm{m}_{\mathrm{b}}$ resummed in the 5FNS (differences at NLO for large masses)

Differential distributions

Outline

I. A basic introduction to perturbative QCD @ colliders
2. Automating NLO calculations in QCD for new physics
3. NLO impact on dark matter searches at the LHC
4. Vector-like quark phenomenology
5. Summary - conclusions

Summary

\checkmark NLO-QCD simulations for new physics are now the state of the art - Via a joint use of FeynRules and MADGraph5_aMC@NLO
\div Divergences (UV, R2, IR) and MC subtraction terms are automatically handled
\therefore Many models are already publicly available (more to come)
\star Supersymmetry-inspired simplified models
\star Extended Higgs sectors, extra gauge bosons
\star Dark matter model
\star Higgs and top effective field theories
\star Vector-like quark models

NLO effects are important

* Better control of the normalization
$\%$ Distortion of the shapes
$\%$ Reduction of the theoretical uncertainties \star Effects on a CLs number (even if the central value shift is mild)

