

Automatic NLO predictions matched with parton showers for new physics

Benjamin Fuks

LPTHE / Sorbonne Université

Top LHC France 2019

LPSC - Grenoble - 25 April 2019

Outline

- A basic introduction to perturbative QCD @ colliders
- Automating NLO calculations in QCD for new physics
- NLO impact on dark matter searches at the LHC
- Vector-like quark phenomenology
- Summary conclusions

New physics @ the LHC

- ◆ Path towards the characterization of (potentially observed) new physics
 - Getting information on the nature of an observation (fits, etc.)
 - ★ Leading order Monte Carlo techniques are sufficient
 - Final words on the nature of any potential new physics
 - ★ Accurate measurements and precise predictions (at least NLO QCD)
- ◆ Challenges with respect to new physics simulations
 - ❖ Theoretically, we are still in the dark
 - ★ No sign of new physics, measurements are Standard-Model-like
 - No leading new physics candidate theory
 - ★ Plethora of models to implement in the tools
- ♦ New physics is standard in many tools today
 - * Result of 20 years of development
 - ♣ Precision: processes can be simulated (easily) at the NLO-QCD accuracy
 - Used framework: MG5_aMC@NLO & showcases involving top quarks

QCD 101: predictions at the LHC

igspace Distribution of an observable ω : the QCD factorization theorem

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\omega} = \sum_{ab} \int \mathrm{d}x_a \, \mathrm{d}x_b \, \mathbf{f}_{a/\mathbf{p}_1}(x_a; \mu_F) \, \mathbf{f}_{b/\mathbf{p}_2}(x_b; \mu_F) \, \frac{\mathrm{d}\sigma_{ab}}{\mathrm{d}\omega}(\dots, \mu_F)$$

- Long distance physics: the parton densities
- \clubsuit Short distance physics: the differential parton cross section $d\sigma_{ab}$
- \clubsuit Separation of both regimes through the factorization scale μ_F
 - ★ Choice of the scale ➤ theoretical uncertainties
- ◆ Short distance physics: the partonic cross section
 - Calculated order by order in perturbative QCD: $d\sigma = d\sigma^{(0)} + \alpha_s d\sigma^{(1)} + ...$
 - ★ The more orders included, the more precise the predictions
 - \star Truncation of the series and $\alpha_s >$ theoretical uncertainties

Fixed-order predictions

- igspace Leading-order (LO): $d\sigma \approx d\sigma^{(0)}$
 - Easily calculable
 - * Automated for any theory and any process
 - Very naive
 - * Rough estimate for many observables (large uncertainties)
 - ★ Cannot be used for any observable (e.g., dilepton p_T)

- igsplace Next-to-leading-order (NLO): $d\sigma pprox d\sigma^{(0)} + lpha_{
 m s} d\sigma^{(1)}$
 - Two contributions: virtual loop and real emission
 - **★** Both divergent
 - **★** The sum is finite (KLN theorem)
 - * Reduction of the theoretical uncertainties
 - **★** First order where loops compensate trees
 - Better description of the process
 - ★ Impact of extra radiation
 - ★ More initial states included
 - **★** Sometimes not precise enough

Matrix-element / parton shower matching

- Problems with NLO (fixed-order) calculations
 - ❖ Soft and collinear radiation ➤ large logarithms
 - Spoiling the convergence of the perturbative series
- Matching with parton showers

- * Resummation of the soft and collinear radiation
- Predictions for a fully exclusive description of the collisions
- Suitable for going beyond the parton level (hadronization, detector simulation)

Outline

- I. A basic introduction to perturbative QCD @ colliders
- 2. Automating NLO calculations in QCD for new physics
- 3. NLO impact on dark matter searches at the LHC
- 4. Vector-like quark phenomenology
- 5. Summary conclusions

NLO calculations in a nutshell

Contributions to an NLO result in QCD

Automated NLO-QCD calculations

*Three ingredients: the Born, virtual loop and real emission contributions

$$\sigma_{NLO} = \int \mathrm{d}^4 \Phi_n \mathcal{B} \quad + \quad \int \mathrm{d}^4 \Phi_n \int_{\mathrm{loop}} \mathrm{d}^d \ell \; \mathcal{V} \quad + \quad \int \mathrm{d}^4 \Phi_{n+1} \; \mathcal{R}$$
 Born Virtuals: one extra power of α_s and divergent of α_s and divergent

* Challenge: automatically computing predictions for any process in any model

The virtuals

Virtual contributions

- Loop diagram calculations
 - Calculations to be done in $d=4-2\varepsilon$ dimensions
 - \star Divergences made explicit $(1/\varepsilon^2, 1/\varepsilon)$

Automated NLO-QCD calculations

- **★** Numerical challenge
- Reducing loop integrals to scalar integrals

$$\int d^d \ell \frac{N(\ell)}{D_0 D_1 \cdots D_{m-1}} = \sum a_i \int d^d \ell \frac{1}{D_{i_0} D_{i_1} \cdots}$$

- ★ Involves integrals with up to four denominators
- ★ The decomposition basis is finite

The basis integrals can be calculated once and for all

From tensor to scalar loop integrals (I)

♦ In the past: the reduction is done at the integral level

$$\int d^d \ell \frac{N(\ell)}{D_0 D_1 \cdots D_{m-1}} = \sum a_i \int d^d \ell \frac{1}{D_{i_0} D_{i_1} \cdots}$$

- * For instance: Passarino-Veltman reduction [Passarino & Veltman (NPB'79)]
- Contracting the tensorial structure of the numerator
- \clubsuit Extracting the a_i coefficients from the equalities
- ◆ More recent technique: the reduction can also be done at the integrand level

$$\frac{N(\ell)}{D_0 D_1 \cdots D_{m-1}} = \sum a_i \frac{1}{D_{i_0} D_{i_1} \cdots}$$

An integral equality does not however mean an integrand equality

$$\int d^d \ell \frac{N(\ell)}{D_0 D_1 \cdots D_{m-1}} = \sum a_i \int d^d \ell \frac{1}{D_{i_0} D_{i_1} \cdots} \qquad \Rightarrow \qquad \frac{N(\ell)}{D_0 D_1 \cdots D_{m-1}} = \sum a_i \frac{1}{D_{i_0} D_{i_1} \cdots}$$

Spurious terms must be included

Example: the OPP method

[Ossala, Papadopoulos & Pittau (NPB'07; JHEP'08)]

- ♣ Apparition of spurious terms in the reduction
 - *We restore the equality at the integrand level by introducing spurious terms

$$\frac{N(\ell)}{D_0 D_1 \cdots D_{m-1}} = \sum \left[a_i + \tilde{a}_i(\ell) \right] \frac{1}{D_{i_0} D_{i_1} \cdots}$$

- **★** Their integral vanishes
- ★ Their functional form is known [del Aguila & Pittau (JHEP'04)]
- The integrand numerator can be decomposed

$$N(\ell) = \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} \underbrace{\begin{bmatrix} d_{i_0 i_1 i_2 i_3} + \tilde{d}_{i_0 i_1 i_2 i_3}(\ell) \end{bmatrix}}_{i \neq i_0, i_1, i_2, i_3}^{m-1} D_i + \sum_{i_0 < i_1 < i_2}^{m-1} \underbrace{\begin{bmatrix} c_{i_0 i_1 i_2} + \tilde{c}_{i_0 i_1 i_2}(\ell) \end{bmatrix}}_{i \neq i_0, i_1, i_2}^{m-1} D_i + \sum_{i_0 < i_1}^{m-1} \underbrace{\begin{bmatrix} c_{i_0 i_1 i_2} + \tilde{c}_{i_0 i_1 i_2}(\ell) \end{bmatrix}}_{i \neq i_0, i_1, i_2}^{m-1} D_i + \underbrace{\sum_{i_0 < i_1}^{m-1} \begin{bmatrix} a_{i_0} + \tilde{a}_{i_0}(\ell) \end{bmatrix}}_{i \neq i_0, i_1}^{m-1} D_i + \underbrace{\sum_{i_0 < i_1}^{m-1} D_i + \underbrace{\tilde{P}(\ell) \prod_{i=1}^{m-1} D_i}_{i} +)(\varepsilon)}_{\text{Remainder}}$$

- ★ The coefficients are evaluated numerically
- \star One chooses ℓ so that several denominators vanish \succ simplifications
- ★ One gets a system of equations to (numerically) solve

The rational terms

- The loop momentum lives in a d-dimensional space
 - The reduction should be done in d dimensions and not in 4 dimensions

$$\int \mathrm{d}^d \ell rac{N(\ell, ilde{\ell})}{ar{D}_0ar{D}_1\cdotsar{D}_{m-1}} \quad ext{with } ar{\ell} = \ell + ilde{\ell}$$
 D-dim 4-dim (-2 $arepsilon$)-dim

- ❖ Numerical methods work in four dimensions ➤ to be accounted for
- \uparrow The R_I terms originate from the denominators
 - Connected to the internal propagators
- \uparrow The R₂ terms originate from the numerator
 - Can be seen as extra diagrams with special Feynman rules

R_I terms

ightharpoonup The R_I terms originate from the denominators

$$\frac{1}{\bar{D}} = \frac{1}{D} \left(1 - \frac{\tilde{\ell}^2}{\bar{D}} \right)$$

Automated NLO-QCD calculations

*These extra pieces can be calculated generically (3 integrals in total)

$$\int d^{d}\bar{\ell} \frac{\tilde{\ell}^{2}}{\bar{D}_{i}\bar{D}_{j}} = -\frac{i\pi^{2}}{2} \left[m_{i}^{2} + m_{j}^{2} - \frac{p_{i} - p_{j})^{2}}{2} \right] + \mathcal{O}(\varepsilon)$$

$$\int d^{d}\bar{\ell} \frac{\tilde{\ell}^{2}}{\bar{D}_{i}\bar{D}_{j}\bar{D}_{k}} = -\frac{i\pi^{2}}{2} + \mathcal{O}(\varepsilon)$$

$$\int d^{d}\bar{\ell} \frac{\tilde{\ell}^{2}}{\bar{D}_{i}\bar{D}_{j}\bar{D}_{k}\bar{D}_{l}} = -\frac{i\pi^{2}}{6} + \mathcal{O}(\varepsilon)$$

- * The denominator structure is already known at the reduction time
- ♣ The R_I coefficients are extracted during the reduction

Conclusions

R₂ terms

ightharpoonup The R₂ terms originate from the numerator

$$\bar{N}(\bar{\ell}) = N(\ell) + \tilde{N}(\tilde{\ell}, \ell, \varepsilon) \Rightarrow R_2 \equiv \lim_{\varepsilon \to 0} \frac{1}{(2\pi)^4} \int d^d \bar{\ell} \frac{\tilde{N}(\tilde{\ell}, \ell, \varepsilon)}{\bar{D}_0 \bar{D}_1 \cdots \bar{D}_{m-1}}$$

- Practically, we isolate the epsilon part
- There is only a finite set of loops for which it does not vanish
- \blacklozenge They can be re-expressed in terms of R₂ Feynman rules

- Properties of the R₂
 - Process-dependent and model-dependent
 - In a renormalizable theory, there is a finite number of them
 - ★ They can be calculated once and for all for a specific model
 - > R_2 counterterm Feynman rules

Reals

Conclusions

Infrared divergences

◆ Properties of the NLO cross section

$$\sigma_{NLO} = \int d^4 \Phi_n \mathcal{B} + \int d^4 \Phi_n \int_{loop} d^d \ell \mathcal{V} + \int d^4 \Phi_{n+1} \mathcal{R}$$
Including UV counterterms

- * All the individual pieces are (infrared-)divergent
 - ★ Issues for a numerical code
- ♣ The sum is finite (KLN theorem)
 - ★ The divergences have the same origin and cancel
 - ★ Numerically, their cancellation must be dealt with explicitly
 - ★ Introduction of a subtraction method

Origins of the infrared divergences

- ◆ Divergences are related to soft and collinear radiation
 - * Real emission (in the soft limit)

$$iM \approx g_s T^a \left[\frac{\epsilon^* \cdot k_2}{k_g^0 \left(1 + \cos \theta \right)} - \frac{k_1 \cdot \epsilon^*}{k_1^0 k_g^0 \left(1 - \cos \theta \right)} \right] iM^{\text{Born}}$$

Virtual corrections (in the soft limit)

$$iM \approx (ig_s)^2 \int d\ell \frac{k_1 \cdot k_2}{\ell^2 \left[k_2^0 \ell^0 \left(1 + \cos\theta\right)\right] \left[k_1^0 \ell^0 \left(1 - \cos\theta\right)\right]} iM^{\text{Born}}$$

- ❖ If we cannot distinguish "no branching" from "soft-collinear emission"
 - **★** Cancellation occurs
 - ★ Infrared safety: observables are not sensitive to soft-collinear emissions
- → Structure of the poles
 - ❖ Virtuals: in dimensional regularization, poles in the regularization parameter
 - * Real emission: poles appear after integration over the d-dimensional phase space

Subtraction methods

- Subtracting the poles
 - ❖ The structure of the poles is known ➤ subtraction methods

$$\sigma_{NLO} = \int d^4 \Phi_n \, \mathcal{B} + \int d^4 \Phi_{n+1} \, \left[\mathcal{R} - \mathcal{C} \right] + \int d^4 \Phi_n \left[\int_{\text{loop}} d^d \ell \, \mathcal{V} + \int d^d \Phi_1 \mathcal{C} \right]$$

- \clubsuit The subtraction terms $\mathscr C$ contains the pole structure
 - * Subtracted from the reals > makes them finite
 - * Added back to the virtuals > makes them finite
 - ★ All individual pieces are finite
 - ★ Integrals can be computed numerically in four dimensions
- ◆ Choice of the subtraction terms
 - Must match the infrared structure of the real
 - Should be integrable over the one-body phase space conveniently
 - **★** To be added to the virtuals
 - Should be integrable numerically conveniently

The Frixione-Kunszt-Signer subtraction (I)

[Frixione, Kunszt, Signer (NPB'96)]

→ Division of the phase space

Introduction

Decomposition of the matrix element: at most one singularity per term

$$\mathrm{d}\sigma^{(n+1)} = \sum_{ij} \mathcal{S}_{ij} \mathrm{d}\sigma^{(n+1)}_{ij}$$
 where (i,j) denotes a parton pair that yields an IR divergence

- ***** The behavior of S_{ij} is such that:
 - $\star S_{ij} \rightarrow I$ if the partons i and j are collinear
 - ★ S_{ij} → I if the parton i is soft
 - **★** S_{ij} →0 for all other infrared limits

The Frixione-Kunszt-Signer subtraction (2)

[Frixione, Kunszt, Signer (NPB'96)]

- ◆ The FKS formula
 - lacktriangle The infrared (IR) singularities are separated $d\sigma^{(n+1)} = \sum_{i} \mathcal{S}_{ij} d\sigma^{(n+1)}_{ij}$

$$d\sigma^{(n+1)} = \sum_{ij} S_{ij} d\sigma_{ij}^{(n+1)}$$

 \bullet The divergent behaviour of σ_{ij} reads

$$\mathrm{d}\sigma_{ij}^{(n+1)} \propto \frac{1}{E_i^2} \frac{1}{1-\cos\theta_{ij}} \propto \frac{1}{\xi_i^2} \frac{1}{1-y_{ij}} \quad \text{with} \quad \begin{cases} \xi_i = E_i \sqrt{\hat{s}} \\ y_{ij} = \cos\theta_{ij} \end{cases}$$
 Controls the soft pieces Controls the collinear pieces

We define a divergence-free quantity

$$\mathrm{d}\sigma_{ij}^{(n+1)} = \left[\frac{1}{\xi_i}\right]_c \left[\frac{1}{1-y_{ij}}\right]_\delta \left[\xi_i^2(1-y_{ij}) \left|M_{ij}^{(n+1)}\right|^2\right] \mathrm{d}\xi_i \ \mathrm{d}y_{ij} \ \mathrm{d}\phi \ \mathrm{d}\Phi_n^{ij}$$
 Regulators: "plus-distribution" No more IR divergencies Factorized phase space

The regulators introduce two parameters

$$\int_{0}^{\xi_{\text{max}}} d\xi_{i} f(\xi_{i}) \left[\frac{1}{\xi_{i}} \right]_{c} = \int_{0}^{\xi_{\text{max}}} d\xi_{i} \frac{f(\xi_{i}) - f(0)\Theta(\xi_{\text{cut}} - \xi_{i})}{\xi_{i}}$$

$$\int_{-1}^{+1} dy_{ij} g(y_{ij}) \left[\frac{1}{1 - y_{ij}} \right]_{\delta} = \int_{-1}^{+1} dy_{ij} \frac{g(y_{ij}) - g(1)\Theta(y_{ij} - 1 + \delta)}{1 - y_{ij}}$$

Events and counter-events

- ◆ The regulators define events and counter-events
 - Integrating over the regulators gives

$$\mathrm{d}\sigma_{ij}^{(n+1)} = \left[\frac{1}{\xi_i}\right]_c \left[\frac{1}{1-y_{ij}}\right]_\delta \Sigma_{ij}(\xi_i,y_{ij}) \mathrm{d}\xi_i \, \mathrm{d}y_{ij} \qquad \qquad \text{Event} \qquad \qquad \text{Counter-event}$$

$$= \int_0^{\xi_{\mathrm{max}}} \mathrm{d}\xi_i \int_{-1}^{+1} \mathrm{d}y_{ij} \frac{1}{\xi_i(1-y_{ij})} \left[\Sigma_{ij}(\xi_i,y_{ij}) - \Sigma_{ij}(\xi_i,1)\Theta(y_{ij}-1+\delta)\right] - \Sigma_{ij}(0,y_{ij})\Theta(\xi_{\mathrm{cut}}-\xi_i) + \Sigma_{ij}(0,1)\Theta(y_{ij}-1+\delta)\Theta(\xi_{\mathrm{cut}}-\xi_i)$$

- → Properties of the events and counter-events
 - \clubsuit If i and j are on-shell (event), the combined ij parton is on-shell (counter-event)
 - *This leads to a reshuffling of all particle momenta
 - An event and the associated counter-event can fill different histogram bins
 - ★ Peak-dip structure for the fixed-order distributions (even for IR safe observables and for any binning resolution)

Fixed order event generation

- Unweighting is not possible at the fixed order
 - Kinematic mismatch of events and counter-events
 - ★ The (n)-body and (n+1)-body contributions are not bounded from above
 - **★** Only weighted events can be used

- Fixed-order instabilities
 - \P (n)-body kinematical constraints relaxed in the (n+1)-body case
 - ★ Weird behavior of the distributions

Matching with parton showers

Conclusions

Matching NLO calculations to parton showers

- ◆ Parton shower / hadronization effects
 - * Evolution of hard partons down to more realistic final states made of hadrons
 - ★ Fully exclusive description of the events
 - * Resummation of the soft-collinear QCD radiation
 - **★** Cures the fixed-order instabilities
- ◆ Double counting when matching with parton showers

- Two sources of double counting
 - * Radiation: both at the level of the reals and of the shower
 - ★ No radiation: both in the virtuals and in the no-emission probability

The MC@NLO prescription (I)

[Frixione, Webber (JHEP'02)]

- ◆ One solution to the double counting issue: the MC@NLO method
 - ♣The shower is unitary

Introduction

- * What is double counted in the virtuals is (minus) what is double counted in the reals
- *We introduce MC counterterms: adding and subtracting identical contributions

- $\star \mathcal{I}_{\mathrm{MC}}^{(n)}$ represents the shower operator for a (n)-body final state
- ★ The MC counterterms: how the shower gets from (n)-body to (n+1)-body final states

$$\mathcal{MC} = \left| \frac{\partial \left(t^{\text{MC}}, z^{\text{MC}}, \phi \right)}{\partial \Phi_1} \right| \frac{1}{t^{\text{MC}}} \frac{\alpha_s}{2\pi} P_{a \to bc}(z^{\text{MC}}) \mathcal{B}$$

[Frixione, Webber (JHEP'02)]

→ Properties of the Monte Carlo counterterms

$$\sigma_{NLO} = \int d^4 \Phi_n \left[\mathcal{B} + \int_{\text{loop}} d^d \ell \mathcal{V} + \int d^4 \Phi_1 \mathcal{M} \mathcal{C} \right] \mathcal{I}_{MC}^{(n)} + \int d^4 \Phi_{n+1} \left[\mathcal{R} - \mathcal{M} \mathcal{C} \right] \mathcal{I}_{MC}^{(n+1)}$$

- Maintain the NLO normalization of the cross section
 - \star After expanding the shower operator at order α_s
- *They match the real emission IR behavior (by definition of the shower)
 - ★ The MC counterterms and the reals have the same kinematics by construction (no need for momentum reshuffling; the cancellation is exact)
 - * Weights for the (n)-body and (n+1)-body are now bounded from above
 - **★** Unweighting is possible
- *They ensure a smooth transition between the hard and soft-collinear regions
 - **\star** Soft-collinear region: $\mathcal{R} \approx \mathcal{MC}$ and the shower dominates
 - ***** Hard region: $\mathcal{MC} \approx 0$, $\mathcal{I}_{\mathrm{MC}}^{(n)} \approx 0$, $\mathcal{I}_{\mathrm{MC}}^{(n+1)} \approx 1$ and the hard emission dominates
- They are shower-dependent

Monte Carlo and FKS counterterms

- ♦ MC and FKS counterterms
 - * The MC counterterms cannot be integrated numerically
 - ★ Issue with the pole cancellation in the virtuals
 - ★ Simultaneous usage of the NLO and MC counterterms

- ❖ In practice, S-events and H-events are generated separately
 - ★ The related contribution can carry a negative weight
 - * The sign of the weight has to be included in the unweighting procedure

[Alwall, Frederix, Frixione, Hirschi, Mattelaer, Shao, Stelzer, Torrielli & Zaro (JHEP'14)]

Summary: the NLO+PS simulation chain

Conclusions

Automatic NLO simulations with MG5_AMC

◆ From Lagrangians to analyzed NLO simulated collisions

- FEYNRULES is linked to NLOCT
 - ★ Calculation of UV and R₂ counterterms
 - ★ Export of the information to the UFO

```
[ Alloul, Christensen, Degrande, Duhr & BF (CPC'14) ]
[ Degrande (CPC'15) ]
[ Degrande, Duhr, BF, Mattelaer & Reither (CPC'12) ]
[ Degrande, Duhr, BF, Hirschi, Mattelaer & Shao (in prep.) ]
```

- Parton shower matching: MC@NLO
 - ★ Automatic (MG5_aMC)
 - * Restrictions on the renormalization scheme

Model library

- ♦ NLO-QCD simulations for new physics are now the state of the art
 - * Via a joint use of FEYNRULES and MADGRAPH5_aMC@NLO
 - Many models are publicly available
 - ★ MSSM and supersymmetry-inspired simplified models
 - ★ BSM Higgs models
 - ★ Extra gauge bosons
 - ★ Dark matter simplified models
 - ★ Higgs effective field theories
 - **★** Top effective field theories
 - ★ Vector-like quark models

[http://feynrules.irmp.ucl.ac.be/wiki/NLOModels]

Outline

- I. A basic introduction to perturbative QCD @ colliders
- 2. Automating NLO calculations in QCD for new physics
- 3. NLO impact on dark matter searches at the LHC
- 4. Vector-like quark phenomenology
- 5. Summary conclusions

Top-philic dark matter @ LHC

[Arina, Backovic, Conte, BF, Guo, Heisig, Hespel, Krämer, Maltoni, Martini, Mawatari, Pellen & Vryonidou (JHEP'16)]

- ◆ A simplified model for dark matter with a mediator and a DM candidate
 - MFV motivation: enhanced couplings to the third generation
- This scenario can be probed in many ways at colliders

- ★ With or without missing energy
- ★ Via tree or loop-induced processes
- ★ Via top-enriched final states or not

Recasting with MADANALYSIS 5

[Conte, BF, Serret (CPC '13); Conte, Dumont, BF, Wymant (EPJC '14); Dumont, BF, Kraml et al. (EPJC '15); Conte & BF (IJMPA '18)]

- ◆ The MADANALYSIS 5 strategy for the reinterpretation of an LHC analysis
 - * Relies on a (public) detector simulation mimicking ATLAS-CMS simulations
 - * Relies on a (public) framework where LHC analyses can be easily implemented

Implementing a new analysis in MADANALYSIS 5

- Picking up an experimental publication
 - Reading
 - Understanding

♦ Writing the analysis code in the tool internal language ✓ Relatively easy

- Getting the information missing from the publication for a proper validation
 - * Efficiencies (trigger, electrons, muons, b-tagging, JES, etc.)
 - \star Including p_T and/or η dependence
 - **★** Accurate information

- Essential
- X Often difficult!
- Detailed cutflows for some well-defined benchmark scenarios
 - ★ Exact definition of the benchmarks (SLHA spectra)
 - ★ Event generation information (cards, tunes, LHE files if possible)
- Expected number of events in each region and cross sections
- Digitized histograms (e.g., on HEPDATA)
- Comparing theory tools and real life (and beware of the genuine differences between both approaches)

Recasting CMS-EXO-12-048

[Conte, BF, Guo ('16)]

- Missing information for the validation
 - Discussion with CMS to get validation benchmarks
 - Cutflows and Monte Carlo information for given benchmarks

♦Validation:

Introduction

	Selection step	CMS	$\epsilon_i^{ ext{CMS}}$	MA5	$\mid \epsilon_i^{ ext{MA5}} \mid$	$\delta_i^{ m rel}$
0	Nominal	84653.7		84653.7		
1	One hard jet	50817.2	0.6	53431.28	0.631	5.2%
2	At most two jets	36061	0.7096	38547.75	0.721	1.61%
3	Requirements if two jets	31878.1	0.884	34436.35	0.893	1.02%
4	Muon veto	31878.1	1	34436.35	1.000	0
5	Electron veto	31865.1	1	34436.35	1.000	0
6	Tau veto	31695.1	0.995	34397.54	0.998	0.3%
	$E_T > 250 \text{ GeV}$	8687.22	0.274	7563.04	0.219	20.00%
	$E_T > 300 \text{ GeV}$	5400.51	0.621	4477.67	0.592	4.66%
	$E_T > 350 \text{ GeV}$	3394.09	0.628	2813.70	0.628	0.00%
	$E_T > 400 \text{ GeV}$	2224.15	0.6553	1753.71	0.623	4.93%
	$E_T > 450 \text{ GeV}$	1456.02	0.654	1110.92	0.633	3.21%
	$E_T > 500 \text{ GeV}$	989.806	0.679	722.83	$\mid 0.650 \mid$	4.27%
	$E_T > 550 \text{ GeV}$	671.442	0.678	487.54	0.674	0.59%

Validated at the 20% leve

Issue with the low-MET modelling in DELPHES

MADANALYSIS 5 analyses on Inspire

[BF, Martini ('16)]

* DOI are assigned: can be cited, searched for, etc.

MadAnalysis5 implementation of the CMS search for dark matter production with top quark pairs in the single lepton channel (CMS-B2G-14-004)

DOI and citations

Fuks, Benjamin; Martini, Antony

Description: This is the MadAnalysis5 implementation of the CMS search for dark matter in a channel where a pair of dark matter particles is produced in association with a top-antitop system. This search targets events featuring a single lepton originating from the top decays and a large amount of missing transverse energy.

Information how to use this code and a detailed validation summary are available at http://madanalysis.irmp.ucl.ac.be/wiki/PhysicsAnalysisDatabase. The CMS analysis is documented at https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G14004.

Cite as: Fuks, B., Martiny, A. (2016). MadAnalysis5 implementation of the CMS search for dark matter production with top quark pairs in the single lepton channel (CMS-B2G-14-004). doi: 10.7484/INSPIREHEP.DATA.MIHA.JR4G

Automatic installation of all implemented analyses from MADANALYSIS 5

Record added 2016-05-09, last modified 2016-05-09

tt+MET constraints on top-philic dark matter

[Arina, Backovic, Conte, BF, Guo, Heisig, Hespel, Krämer, Maltoni, Martini, Mawatari, Pellen & Vryonidou (JHEP'16)]

- A simplified model for top-philic dark matter
 - A dark sector with a fermionic dark matter candidate X
 - A (scalar) mediator Y_0 linking the dark sector and the top

$$\mathcal{L}_{t,X}^{Y_0} = -\left(g_t \, \frac{y_t}{\sqrt{2}} \, \bar{t}t + g_X \, \bar{X}X\right) Y_0$$

❖ Could be probed with tt+MET events (CMS-B2G-14-004)

How is the picture changing when including scale variations?

NLO effects on a CLs

[Arina, Backovic, Conte, BF, Guo, Heisig, Hespel, Krämer, Maltoni, Martini, Mawatari, Pellen & Vryonidou (JHEP'16)]

◆ There are theoretical uncertainties on a CLs number

	(m_Y,m_X)	$\sigma_{ m LO} \; [m pb]$	CL _{LO} [%]	$\sigma_{ m NLO}~{ m [pb]}$	CL _{NLO} [%]
I	(150, 25) GeV	$0.658^{+34.9\%}_{-24.0\%}$	$98.7^{+0.8\%}_{-13.0\%}$	$0.773^{+6.1\%}_{-10.1\%}$	$95.0^{+2.7\%}_{-0.4\%}$
II	$(40,30)~{\rm GeV}$	$0.776^{+34.2\%}_{-24.1\%}$	$74.7^{+19.7\%}_{-17.7\%}$	$0.926^{+5.7\%}_{-10.4\%}$	$84.2^{+0.4\%}_{-14.4\%}$
III	$(240,100)~\mathrm{GeV}$	$0.187^{+37.1\%}_{-24.4\%}$	$91.6^{+6.4\%}_{-18.1\%}$	$0.216^{+6.7\%}_{-11.4\%}$	$86.5^{+8.6\%}_{-5.5\%}$

- An excluded point may not be excluded when accounting for uncertainties
- * The CLs number can increase / decrease at NLO
- * The error band is reduced

- 1. A basic introduction to perturbative QCD @ colliders
- 2. Automating NLO calculations in QCD for new physics
- 3. NLO impact on dark matter searches at the LHC
- 4. Vector-like quark phenomenology
- 5. Summary conclusions

A general vector-like quark model

BF & Shao (EPJC'17)]

An effective Lagrangian (with four partners: T, B, X and Y)

Automated NLO-QCD calculations

$$\mathcal{L}_{\text{VLQ}} = i\bar{Y}D\!\!\!/Y - m_{Y}\bar{Y}Y + i\bar{B}D\!\!\!/B - m_{B}\bar{B}B + i\bar{T}D\!\!\!/T - m_{T}\bar{T}T + i\bar{X}D\!\!\!/X - m_{X}\bar{X}X$$

$$-h\left[\bar{B}\left(\hat{\kappa}_{L}^{B}P_{L} + \hat{\kappa}_{R}^{B}P_{R}\right)q_{d} + \bar{T}\left(\hat{\kappa}_{L}^{T}P_{L} + \hat{\kappa}_{R}^{T}P_{R}\right)q_{u} + \text{h.c.}\right]$$

$$+ \frac{g}{2c_{w}}\left[\bar{B}Z\!\!\!\!/\left(\tilde{\kappa}_{L}^{B}P_{L} + \tilde{\kappa}_{R}^{B}P_{R}\right)q_{d} + \bar{T}Z\!\!\!\!/\left(\tilde{\kappa}_{L}^{T}P_{L} + \tilde{\kappa}_{R}^{T}P_{R}\right)q_{u} + \text{h.c.}\right]$$

$$+ \frac{\sqrt{2}g}{2}\left[\bar{Y}\bar{W}\left(\kappa_{L}^{Y}P_{L} + \kappa_{R}^{Y}P_{R}\right)q_{d} + \bar{B}\bar{W}\left(\kappa_{L}^{B}P_{L} + \kappa_{R}^{B}P_{R}\right)q_{u} + \text{h.c.}\right]$$

$$+ \frac{\sqrt{2}g}{2}\left[\bar{T}W\!\!\!\!/\left(\kappa_{L}^{T}P_{L} + \kappa_{R}^{T}P_{R}\right)q_{d} + \bar{X}W\!\!\!\!/\left(\kappa_{L}^{X}P_{L} + \kappa_{R}^{X}P_{R}\right)q_{u} + \text{h.c.}\right]$$

- → Illustrative process
 - * Quark partners decay into an electroweak boson and a jet/top
 - ★ Pair, single and QV/QH associated production can be simulated

Total cross sections for pair production

BF & Shao (EPJC'17)

◆ Total rates for pair production at 13 TeV

$m_T [{ m GeV}]$	Scenario	$\sigma_{ m LO} \ [m pb]$	$\sigma_{ m NLO}~{ m [pb]}$	
400	QCD	$(7.069\ 10^0)^{+32.0\%}_{-22.6\%}{}^{+2.7\%}_{-2.7\%}$	$(1.004\ 10^1)^{+9.4\%}_{-11.3\%}{}^{+2.5\%}_{-2.5\%}$	
	TH1	$ \begin{bmatrix} (7.022 \ 10^0)^{+30.2\%}_{-23.8\%} & +1.2\% \\ -23.8\% & -4.1\% \end{bmatrix} $	$(9.980\ 10^{0})^{+8.0\%}_{-12.5\%}^{+1.2\%}_{-3.8\%}_{-3.8\%}$	
800	QCD	$ (1.261 \ 10^{-1})_{-23.2\%}^{+33.2\%}_{-3.8\%}^{+3.8\%} $	$(1.733\ 10^{-1})^{+8.5\%}_{-11.1\%}{}^{+4.4\%}_{-4.4\%}$	
	TH1	$\begin{bmatrix} (1.244 \ 10^{-1})^{+18.8\%}_{-31.2\%} + 7.3\% \\ -31.2\% - 14.0\% \end{bmatrix}$	$(1.702 \ 10^{-1})^{+2.3\%}_{-20.0\%} +6.0\%$	
1200	QCD	$ (7.685 \ 10^{-3})^{+34.0\%}_{-23.7\%}{}^{+5.8\%}_{-5.8\%} $	$(1.061\ 10^{-2})^{+8.8\%}_{-11.4\%}{}^{+5.8\%}_{-5.8\%}$	
	TH1	$\begin{bmatrix} (1.053 \ 10^{-2})^{+1.7\%} & +18.4\% \\ -36.7\% & -25.8\% \end{bmatrix}$	$(1.372 \ 10^{-2})^{+16.6\%}_{-29.0\%}^{+18.2\%}_{-25.8\%}$	
1600	QCD	$ (7.477 \ 10^{-4})^{+34.9\%}_{-24.2\%} + 8.5\% $	$(1.030\ 10^{-3})^{+9.0\%}_{-11.6\%}{}^{+8.6\%}_{-8.6\%}$	
	TH1	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$(4.117 \ 10^{-3})_{-21.8\%}^{+14.6\%}_{-20.9\%}$	
2000	QCD	$ (8.980 \ 10^{-5})_{-24.5\%}^{+35.5\%}_{-18.3\%}^{+18.3\%} $	$(1.260\ 10^{-4})^{+8.7\%}_{-11.7\%}{}^{+17.8\%}_{-17.8\%}$	
2000	TH1	$ \left (1.563 \ 10^{-3})^{+4.2\%}_{-20.0\%} \right ^{+5.4\%}_{-13.0\%} $	$(1.960\ 10^{-3})^{+6.3\%}_{-14.0\%}{}^{+6.0\%}_{-13.6\%}$	

- **★** NNPDF 3.0 densities
- ★ Central scale: average M_T
- ★ 'QCD' QCD only

★ 'TH1': all diagrams (with Higgs exchanges)

NLO effects

Introduction

- ★ 50% increase of the rate
- **★** Reduction of the scale uncertainties

- Higgs-exchange diagrams
 - **★** Dominate for large masses
 - **★** Impact on the uncertainties

NLO total rates for diHiggs production

[Cacciapaglia, Cai, Carvalho, Deandrea, Flacke, BF, Majumder & Shao (JHEP`17)

◆Total rates (first NLO-QCD calculations in many cases)

- ❖ NLO: large K-factors, smaller errors
- * EW diagrams for QQ production
 - ★ Surpass QCD prod. at large mass

- QH production
 - ★ Competes with QQ prod. at large mass

- + H-boson pair production
 - ★ Loop-induced diagrams dominate

- * t-channel VLQ exchange diagrams: huge K-factor
- > Coupling proportional to $m_Q/v_{SM} U_{41}$
- ➤ Driven by the u-VLQ mixing *U*
- >VLQ mass enhancement

[BF & Shao (EPJC'17)]

Benchmark: the VLQ is an up partnerCouples to the Z only

- ❖ The Ist jet mostly arises from Q decays
 - ★ Peak at about half the Q mass
- Constant K-factors (normalization effects)
 - \star K=I and I.20 for m_Q=500 GeV and I.5 TeV
- NLO effects
 - * Slight distortion of the shapes for large mQ
 - ★ Reduction of the theoretical uncertainties

Single VLQ production: 2nd jet

[BF & Shao (EPJC'17)]

Automated NLO-QCD calculations

- ♣ Benchmark: the VLQ is an up partner
 - ★ Couples to the Z only

- ♣ The 2nd jet spectrum
 - **★** The low p_T region is depleted (Q is heavy)
 - ★ Plateau extending up to half the Q mass
 - > jet issued either from the Q or from the Z
 - \triangleright remainder: Q \rightarrow Z j \rightarrow 3j
- Constant K-factors (normalization effects)
 - \star K=I and I.20 for m_Q=500 GeV and I.5 TeV
- NLO effects
 - **★** Normalization enhancement (for large m_Q)
 - ★ Slight distortion of the shapes (for large m_Q)
 - * Reduction of the theoretical uncertainties

Cacciapaglia, Carvalho, Deandrea, Flacke, BF, Majumder, Panizzi & Shao (PLB`19) 1

Single top-partner production

Automated NLO-QCD calculations

♣ Benchmark: the VLQ is a top partner

- Lagrangian and diagrams
 - Production through W-couplings

$$\mathcal{L}_{\text{VLQ}} = i\bar{T}DT - m_T\bar{T}T$$

$$+ \frac{\sqrt{2}g}{2} \kappa_L^T \left[\bar{T}WP_Lq_d + \text{h.c.}\right]$$

Diagrams

- Total rates at NLO
 - 4 and 5FNS: b-mass treatment
 - ❖ K-factors in the 5FNS: < I (virtuals)</p>
 - ★ K-factors in the 4FNS: M_T dependent
 - * NLO: reduction of the uncertainties
 - ♣ Log Q/m_b resummed in the 5FNS (differences at NLO for large masses)

[Cacciapaglia, Carvalho, Deandrea, Flacke, BF, Majumder, Panizzi & Shao (PLB`19)]

- Benchmark: the VLQ is an top partner
 - **★** Couples to the W-boson
 - ★ The leading light jet: a key handle on the signal

- ❖ Very good shape agreement @NLO
 - ★ Forward jets crucial for signal selection
 - ★ 4FNS and 5FNS agree in shape
- NLO effects
 - **★** Important distortion of the shapes
 - > K factors are NOT constant
 - * Reduction of the uncertainties at NLO

- A basic introduction to perturbative QCD @ colliders
- Automating NLO calculations in QCD for new physics
- NLO impact on dark matter searches at the LHC
- Vector-like quark phenomenology
- **Summary conclusions**

Summary

- ♦ NLO-QCD simulations for new physics are now the state of the art
 - * Via a joint use of FEYNRULES and MADGRAPH5_aMC@NLO
 - ❖ Divergences (UV, R₂, IR) and MC subtraction terms are automatically handled
 - ❖ Many models are already publicly available (more to come)
 - ★ Supersymmetry-inspired simplified models
 - ★ Extended Higgs sectors, extra gauge bosons
 - ★ Dark matter model
 - ★ Higgs and top effective field theories
 - ★ Vector-like quark models

[http://feynrules.irmp.ucl.ac.be/wiki/NLOModels]

- ♦ NLO effects are important
 - Better control of the normalization
 - Distortion of the shapes
 - Reduction of the theoretical uncertainties
 - ★ Effects on a CLs number (even if the central value shift is mild)