Dark matter search at ATLAS with top quarks

Sabine Crépé-Renaudin CNRS, LPSC

Top LHC France 2019

Dark matter: observations

Evidence for dark matter from astrophysics and cosmology observations at different scales

Galaxy clusters via Xrays and gravitational lensing, collisions

Nucleosynthesis

(Schramm & Turner 1998)

Cosmic microwave background

© ESA, Planck Collaboration

Large scale structure formation

© simulations were performed at the <u>National Center for Supercomputer</u> <u>Applications</u> by <u>Andrey Kravtsov</u> (<u>The University of Chicago</u>) and <u>Anatoly Klypin</u> (<u>New Mexico State University</u>). Visualisations by <u>Andrey Kravtsov</u>.

Dark matter: what do we know about it ?

Properties

- It makes up 85% of the matter in the Universe today
 - It is massive
- It interacts weakly with ordinary matter (at least through gravitation)
 - It is neutral
- It interacts weakly with itself
- It is stable (a minima very long-lived, order of the age of the universe)
 - \Rightarrow Ruled out SM Z and Higgs
 - Need a symmetry to prevent it to decay ex T-parity
- It is "cold" ie non relativistic
 - ⇒ ruled out SM neutrinos (also not enough massive)

© Cold, Warm, and Hot dark matter simulations, credit ITP, University of Zurich.

Dark matter: which candidates ? Associated theories ?

Candidates

- WIMPs = Weakly Interacting Massive Particles
 - → WIMP "miracle" : weak cross-section + particle mass ~1 TeV ~ relic density
 - Lightest Susy particle
 - Kaluza-Klein photon
- Very Weak Interacting Massive Particles
 - gravitinos
 - Axions: to solve the strong CP problem, unstable but long lived
 - Sterile neutrinos: to explain neutrino masses
 - Kaluza Klein gravitons
 - ...
- Could be also a more complex sector with several particles and interactions

Associated theories

- Supersymmetry (R-parity)
- Extra dimensions (KK parity)
- Little Higgs (T-parity)
- QCD axions

Some dark matter candidate particles

https://science.energy.gov/~/media/hep/pdf/files/ pdfs/dmsagreportjuly18_2007.pdf

Dark matter: how to detect it ?

Indirect detection

• Search for charged cosmic rays, gamma rays or neutrinos

© NASA / Sonoma State University, Aurore Simonnet

Collider search

 Produce DM particles from SM particles collisions

Top LHC France 2019 Workshop

Sabine Crépé-Renaudin

Dark matter search at LHC

Search for particles from (UV) complete theories

- → simulate particles decays, dark matter reconstructed as missing ET
 - Supersymmetry
 - Extra dimensions
 - Little Higgs

Use of effective Field theory

→ more general search, many theories show common low energy behaviour

- describe new interactions with few operators
- → but EFT valid only if M >> q ⇒ Run 1 LHC limits M ~1 TeV => should not use energy > 1 TeV => not used at Run 2

Dark matter search at LHC

Simplified models

- In between EFT (used at run 1) and complete theory: add a single DM candidate (Dirac fermion) and a mediator
 - \rightarrow Allow to relax the q² limit but more model dependent
 - → Few free parameters: additional masses and couplings
 - → Allow to use other signatures to probe mediator and thus constrains the model
- mediator that can be scalar, vector or axial-vector, neutral or charged

• more complex two Higgs doublet models and a dark matter particle also studied

Dark matter search at ATLAS

Rich phenomenology leading to a lot of different constraints

using simplified models allows to measure these constraints in the same framework and shows their complementarity

Results using simplified models gathered in one paper: arXiv:1903.01400

 « Constraints on mediator-based dark matter and scalar dark energy models using √s=13 TeV pp collision data collected by the ATLAS detector »

Common model and scenarios

- ATLAS/CMS + theory Dark Matter forum defined the DMSimp model (arXiv:1507.00966)
- Recommendations for benchmark scenarios (arXiv:1703.05703)
- Madgraph implementation (LO/NLO)

→ Next slides focuses on these results (Susy constraints not shown here)

Simplified models with top quarks in final state

ATLAS summary paper

- List of considered models
- Analyses with top quarks contribute almost everywhere

Top final states

- opposite sign top pair
- same sign top pair
- 4 top quarks
- single top + MET
- top pair + MET

Short description	Acronym	Symbol	J^P	Charge	Signatures
Vector/axial-vector mediator	V/AV	$Z_{ m V}'/Z_{ m A}'$	1 [∓]	-	$\frac{\text{jet}/\gamma/W/Z + E_{\text{T}}^{\text{miss}}}{\text{difermion}},$ resonance
Vector baryon-number-charged mediator	VBC	$Z_{ m B}^{\prime}$	1 ⁻	baryon-number	$h + E_{\mathrm{T}}^{\mathrm{miss}}$
Vector flavour-changing mediator	VFC	$Z_{ m VFC}^{\prime}$	1^{-}	flavour	$tt, t + E_{\mathrm{T}}^{\mathrm{miss}}$
Scalar/pseudo-scalar mediator	S/PS	ϕ/a	0^{\pm}	-	$ \begin{array}{c} \text{jet} + E_{\text{T}}^{\text{miss}}, \\ t\bar{t}/b\bar{b} + E_{\text{T}}^{\text{miss}} \end{array} $
Scalar colour-charged mediator	$\mathrm{SCC}_{q/b/t}$	$\eta_{q/b/t}$	0^{+}	colour, 2/3 electric-charge	$jet+E_{\rm T}^{\rm miss},\\b+E_{\rm T}^{\rm miss},\\t+E_{\rm T}^{\rm miss}$
Two-Higgs-doublet plus vector mediator	2 HDM $+Z'_{V}$	$Z'_{ m V}$	1^{-}	-	$h + E_{\rm T}^{\rm miss}$
Two-Higgs-doublet plus pseudo-scalar mediator	2HDM+a	a	0-	-	$ \begin{array}{c} W/Z/h + E_{\rm T}^{\rm miss}, \\ t\bar{t}/b\bar{b} + E_{\rm T}^{\rm miss}, \\ h({\rm inv}), t\bar{t}t\bar{t} \end{array} $
Dark energy	DE	ϕ_{DE}	0^{+}	-	$ \begin{array}{c} \text{jet} + E_{\text{T}}^{\text{miss}}, t\bar{t} \\ + E_{\text{T}}^{\text{miss}} \end{array} \end{array} $

(axial-)vector mediator

Model:

- Free parameters: $m(\chi)$, m(mediator), g_{DM} and g_q , g_l
- Minimal width computed according to couplings and considered particles mass
 - mediator decays considered = ones strictly necessary to maintain model self-consistency

Scenarios	9 _q	9 _{DM}	9 _I
V1: vector model with only couplings to quarks	0.25	1.0	0.
V2: vector model with small couplings to leptons	0.1	1.0	0.01
A1: axial-vector model with only couplings to quarks	0.25	1.0	0.
A2: axial-vector model with equal coupling to quarks & leptons	0.1	1.0	0.1

Scenarios:

 Chosen to show the complementarity of the DM production analyses (mono X + MET) and the mediator-to-visible analyses (di X)

- Top analysis: ttbar resonance search
 - I+jets final state used (Eur. Phys. J. C 78 (2018) 565)

Complementarity between di-X analyses

Limits in the coupling to quark - mediator mass plane, for di-X analysis

- Different di-jet analyses strategies allow to cover mediator mass from 100 GeV to 5 TeV
- Good di-top sensitivity, particularly at high mass despite the lower BR wrt to light quarks
- → Scalar mediator analysis not available, ttbar final state will be dominant there

Caveat: for dijets analyses backgrounds are fitted on data using a sliding-window fit of the m(jj) distribution

- Limits are only valid if the mediator width fraction Γ/m_{Z'} is below the corresponding threshold
 - $\Gamma/m_{Z'} < 50\%$ for di-jet angular
 - Γ/m_{Z'} < 15% for di-jet
 - $\Gamma/m_{Z'}$ < 10% for di-jet TLA ly*l<0.3
 - $\Gamma/m_{Z'}$ < 7% for di-jet TLA ly*l<0.6

→ This does not apply to the ttbar analysis where the backgrounds were constrained with simulations and control regions

Complementarity: vector mediator

MET+X, di-jet, di-top, di-lepton analyses

- di-X analyses limits ~ don't depend on DM mass
- Note: couplings dependence is important
 - good complementarity between MET+X and di-X

g_q=0.25, g_l=0, g_{DM}=1

g_q=0.10, g_l=0.01, g_{DM}=1

Complementarity: axial-vector

MET+X, di-jet, di-top, di-lepton analyses

• Sensitivity depends also on the mediator coupling type

m_x [TeV] Dijet Diet 5 = 13 TeV 37 0 fb 1.4 ATLAS PRD 96. 052004 (2017) Diet TLA S = 13 TeV 29 3 fb PRL 121 (2018) 0818016 Diet + ISB 15 = 13 TeV, 15.5 fb Preliminary ATLAS-CONF-2016-070 1.2 💳 tī resonance 1s = 13 TeV 36 1 fb⁻¹ EPJC 78 (2018) 565 Dibiet 0.8 s = 13 TeV, 36 1 fb⁻¹ PRD 98 (2018) 032016 0.6 E^{miss}+X ie Unitarity Dibjet E_____+ v ts = 13 TeV, 36.1 fb⁻¹ Diiet Eur. Phys. J. C 77 (2017) 393 0.4 E_++iet 15 = 13 TeV. 36.1 fb' JHEP 1801 (2018) 126 E_+^miss+Z(I) VS = 13 TeV, 36.1 fb⁻¹ Axial-vector mediator, Dirac DM -0.2 PLB 776 (2017) 318 g = 0.25, g = 0, g = 1 E_+++V(had) 15 = 13 TeV, 36.1 fb ILLER 10 (2018) 190 All limits at 95% / 0.5 1.5 2 2.5 3 3.5 0 m_{z',} [TeV]

g_q=0.25, g_l=0, g_{DM}=1

Complementarity with direct detection

ATLAS limits can be translated in the cross-section-DM mass plane used for direct detection experiment (arXiv:1603.04156)

- LHC uses 95% CL level for limits, direct detection experiment 90% CL
- Limits valid only for the coupling hypothesis indicated

Grepoble

Flavour changing interaction

Also a vector mediator model but with flavour changing interaction of the DM with ordinary matter

• allows DM interaction with top quarks (right handed field only)

- parameters: mediator mass, gut, gDM
 - DM mass has low impact on kinematics if $m_{Z'} > 2 m_{\chi} = m_{\chi}$ fixed to 1 GeV

Top analyses

- same sign top: <u>arXiv:1812.09743</u>
- top + MET: <u>arXiv:1812.09743</u>

Flavour changing interaction

Grepoble

(pseudo) Scalar, colour-neutral

DM particle produced through the exchange of a spin-0 mediator

- colour-neutral scalar $oldsymbol{\phi}$ or pseudoscalar particle a
- parameters: $m(\phi/a)$, $m(\chi)$, g_{χ} , and the flavour-universal g_q coupling that multiplies the SM-Yukawa coupling to obtain the mediator coupling to fermions
 - ⇒ Minimal Flavour Violation, allows to be compatible with precision flavour measurements
 - ⇒ top quark final states
- Minimal width assumed taking into account only couplings and considered particles mass

Top analyses

• Top pair+MET

• ttbar production through spin0 resonance will be very interesting but difficult because interference with SM ttbar, not available, tttt too low number of events

Top LHC France 2019 Workshop

(pseudo) Scalar, colour-neutral

Limits on the cross-section ratio between signal production and nominal

- $g_{\chi} = g_q = 1$, $m_{\chi} = 1$ GeV (valid for higher mass if decay to DM allowed)
- bbbar and ttbar + MET analyses, and jet+MET

Pseudo-scalar

Model

- 2HDM model (type II) + pseudo-scalar a that couples to DM
- a mixes with the pseudo-scalar partner of SM Higgs boson
- 14 parameters: 5 Higgs masses, DM mass, 3 quartic couplings between scalar doublets and a, y_{χ} coupling between a and DM, EW VEV, ratio of VEV of 2 H doublets, mixing angles
 - hyp: h=SM H, quartic coupling λ =3 for H potential stability, m_A=m_H+=m_H, y_{χ}=1
 - free parameters: ma, mA, $tan\beta$, $sin\theta$ and m_{χ}

Top analyses

• Top pair+MET, 4 top quarks, top + MET

Scenarios:

Scenario 1

1 - (ma, mA) plane

 $\tan\beta=1$, $\sin\theta=0.35$

2 - (ma, tan\beta) plane mA=600 GeV, sin θ =0.35 **3** - sin θ scan m_A=600 (1000) GeV, m_a=200 (350) GeV, tan β =0.5, 1, 50 (0.5, 1)

4 - m_{χ} scan m_A=600 GeV, m_a=250 GeV, tan β =1, sin θ =0.35

Scenario 2

 $Z/\gamma/g/h$

 $b/t/(\chi)$

 $\bar{b}/\bar{t}/(\bar{\chi})$

Scenario 4 - m χ scan with m_A=600 GeV, m_a=250 GeV, tan β =1, sin θ =0.35

View as a function of DM mass

- sensitivity of X+MET analyses independent of m_χ if a can decay in χχ at low m_χ, the region is excluded by Z+MET
- above not enough sensitivity to exclude the parameter space

EFT model of scalar dark energy

EFT implementation of Horndeski theories that introduce a dark energy scalar which couples to gravity

• where T is the energy-momentum tensor corresponding to the SM Lagrangian

for $\mathcal{L}1$, T = m $\psi\psi$ for a Dirac field and is therefore proportional to the mass of the SM fermions \Rightarrow ttbar+MET

• M characteristic energy scale

Conclusion

DM search is a very active field

General searches using simplified models are quite powerful

- Allow to take advantage of the wide analyses sensitivities at LHC to constrain models using the analyses with and without DM particle in the final state
- Common benchmark model defined at DM forum help to focus in interested regions
- Allow to show complementarity between searches at LHC and collider search and direct detection
 experiments

Top quark is an interesting tool in that frame

• in almost all the cases studied and in particular with the presence of a (pseudo)scalar mediator

No signal so far

• next steps: full run 2 statistics to analyse, improved analyses

TO GO FURTHER...

Top LHC France 2019 Workshop

Sabine Crépé-Renaudin

Top LHC France 2019 Workshop

g FCNC, colored charged scalar

Stop decays in top + MET, or similarly to top unless compressed scenario R-parity conservation ⇒ stop produced by pair Top quarks found also in gluinos decays

Collider Search: where does top quark join in ?

Supersymmetry

Greesble

Naturalness requires SUSY to have « light » stop (~TeV)

Scenario 3: $\sin\theta$ scan with $\tan\beta=0.5$, 1, 50 (0.5, 1)

m_a=200 GeV, m_A=600 GeV

m_a=350 GeV, m_A=1000 GeV

$a \rightarrow ttbar allowed$

